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Parallel Computing Toolbox Product Description
Perform parallel computations on multicore computers, GPUs, and computer clusters

Parallel Computing Toolbox lets you solve computationally and data-intensive problems using
multicore processors, GPUs, and computer clusters. High-level constructs—parallel for-loops, special
array types, and parallelized numerical algorithms—enable you to parallelize MATLAB® applications
without CUDA or MPI programming. The toolbox lets you use parallel-enabled functions in MATLAB
and other toolboxes. You can use the toolbox with Simulink® to run multiple simulations of a model in
parallel. Programs and models can run in both interactive and batch modes.

The toolbox lets you use the full processing power of multicore desktops by executing applications on
workers (MATLAB computational engines) that run locally. Without changing the code, you can run
the same applications on clusters or clouds (using MATLAB Parallel Server™). You can also use the
toolbox with MATLAB Parallel Server to execute matrix calculations that are too large to fit into the
memory of a single machine.
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Parallel Computing Support in MathWorks Products
Parallel Computing Toolbox provides you with tools for a local cluster of workers on your client
machine. MATLAB Parallel Server software allows you to run as many MATLAB workers on a remote
cluster of computers as your licensing allows.

Most MathWorks products enable you to run applications in parallel. For example, Simulink models
can run simultaneously in parallel, as described in “Run Multiple Simulations” (Simulink). MATLAB
Compiler™ and MATLAB Compiler SDK™ software let you build and deploy parallel applications; for
example, see the “Parallel Computing” section of MATLAB Compiler “Standalone Applications”
(MATLAB Compiler).

Several MathWorks products now offer built-in support for the parallel computing products, without
requiring extra coding. For the current list of these products and their parallel functionality, see:
https://www.mathworks.com/products/parallel-computing/parallel-support.html
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Create and Use Distributed Arrays

In this section...
“Creating Distributed Arrays” on page 1-4
“Creating Codistributed Arrays” on page 1-5

If your data is currently in the memory of your local machine, you can use the distributed function
to distribute an existing array from the client workspace to the workers of a parallel pool.
Distributed arrays use the combined memory of multiple workers in a parallel pool to store the
elements of an array. For alternative ways of partitioning data, see “Distributing Arrays to Parallel
Workers” on page 3-10.You can use distributed arrays to scale up your big data computation.
Consider distributed arrays when you have access to a cluster, as you can combine the memory of
multiple machines in your cluster.

A distributed array is a single variable, split over multiple workers in your parallel pool. You can
work with this variable as one single entity, without having to worry about its distributed nature.
Explore the functionalities available for distributed arrays in the Parallel Computing Toolbox:
“Run MATLAB Functions with Distributed Arrays” on page 4-19.

When you create a distributed array, you cannot control the details of the distribution. On the
other hand, codistributed arrays allow you to control all aspects of distribution, including
dimensions and partitions. In the following, you learn how to create both distributed and
codistributed arrays.

Creating Distributed Arrays
You can create a distributed array in different ways:

• Use the distributed function to distribute an existing array from the client workspace to the
workers of a parallel pool.

• You can directly construct a distributed array on the workers. You do not need to first create the
array in the client, so that client workspace memory requirements are reduced. The functions
available include eye(___,'distributed'), rand(___,'distributed'), etc. For a full list,
see the distributed object reference page.

• Create a codistributed array inside an spmd statement, see “Single Program Multiple Data
(spmd)” on page 1-12. Then access it as a distributed array outside the spmd statement. This
lets you use distribution schemes other than the default.

In this example, you create an array in the client workspace, then turn it into a distributed array:

parpool('local',4)  % Create pool
A = magic(4);       % Create magic 4-by-4 matrix
B = distributed(A); % Distribute to the workers
B                   % View results in client.
whos                % B is a distributed array here.
delete(gcp)         % Stop pool

You have createdB as a distributed array, split over the workers in your parallel pool. This is
shown in the figure.
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Creating Codistributed Arrays
Unlike distributed arrays, codistributed arrays allow you to control all aspects of distribution,
including dimensions and partitions. You can create a codistributed array in different ways:

• “Partitioning a Larger Array” on page 4-6 — Start with a large array that is replicated on all
workers, and partition it so that the pieces are distributed across the workers. This is most useful
when you have sufficient memory to store the initial replicated array.

• “Building from Smaller Arrays” on page 4-6 — Start with smaller replicated arrays stored on
each worker, and combine them so that each array becomes a segment of a larger codistributed
array. This method reduces memory requirements as it lets you build a codistributed array from
smaller pieces.

• “Using MATLAB Constructor Functions” on page 4-7 — Use any of the MATLAB constructor
functions like rand or zeros with a codistributor object argument. These functions offer a quick
means of constructing a codistributed array of any size in just one step.

In this example, you create a codistributed array inside an spmd statement, using a nondefault
distribution scheme. First, define 1-D distribution along the third dimension, with 4 parts on worker
1, and 12 parts on worker 2. Then create a 3-by-3-by-16 array of zeros.

parpool('local',2) % Create pool
spmd
    codist = codistributor1d(3,[4,12]);
    Z = zeros(3,3,16,codist);
    Z = Z + labindex;
end
Z           % View results in client.
whos        % Z is a distributed array here.
delete(gcp) % Stop pool

For more details on codistributed arrays, see “Working with Codistributed Arrays” on page 4-4.

See Also

Related Examples
• “Distributing Arrays to Parallel Workers” on page 3-10
• “Big Data Workflow Using Tall Arrays and Datastores” on page 5-46
• “Single Program Multiple Data (spmd)” on page 1-12
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Determine Product Installation and Versions
To determine if Parallel Computing Toolbox software is installed on your system, type this command
at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the version of MATLAB you are
running, including a list of all toolboxes installed on your system and their version numbers.

If you want to run your applications on a cluster, see your system administrator to verify that the
version of Parallel Computing Toolbox you are using is the same as the version of MATLAB Parallel
Server installed on your cluster.
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Interactively Run a Loop in Parallel Using parfor
In this example, you start with a slow for-loop, and you speed up the calculation using a parfor-
loop instead. parfor splits the execution of for-loop iterations over the workers in a parallel pool.

This example calculates the spectral radius of a matrix and converts a for-loop into a parfor-loop.
Find out how to measure the resulting speedup.

1 In the MATLAB Editor, enter the following for-loop. Add tic and toc to measure the time
elapsed.

tic
n = 200;
A = 500;
a = zeros(n);
for i = 1:n
    a(i) = max(abs(eig(rand(A))));
end
toc

2 Run the script, and note the elapsed time.

Elapsed time is 31.935373 seconds.
3 In the script, replace the for-loop with a parfor-loop.

tic
n = 200;
A = 500;
a = zeros(n);
parfor i = 1:n
    a(i) = max(abs(eig(rand(A))));
end
toc

4 Run the new script, and run it again. Note that the first run is slower than the second run,
because the parallel pool takes some time to start and make the code available to the workers.
Note the elapsed time for the second run.

By default, MATLAB automatically opens a parallel pool of workers on your local machine.

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
...
Elapsed time is 10.760068 seconds. 
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The parfor run on four workers is about three times faster than the corresponding for-loop
run. The speed-up is smaller than the ideal speed-up of a factor of four on four workers. This is
due to parallel overhead, including the time required to transfer data from the client to the
workers and back. This example shows a good speed-up with relatively small parallel overhead,
and benefits from conversion into a parfor-loop. Not all for-loop iterations can be turned into
faster parfor-loops. To learn more, see “Decide When to Use parfor” on page 2-2.

One key requirement for using parfor-loops is that the individual iterations must be independent.
Independent problems suitable for parfor processing include Monte Carlo simulations and
parameter sweeps. For next steps, see “Convert for-Loops Into parfor-Loops” on page 2-7.

In this example, you managed to speed up the calculation by converting the for-loop into a parfor-
loop on four workers. You might reduce the elapsed time further by increasing the number of workers
in your parallel pool, see “Scale Up parfor-Loops to Cluster and Cloud” on page 2-21.

You can modify your cluster profiles to control how many workers run your loops, and whether the
workers are local or on a cluster. For more information on profiles, see “Discover Clusters and Use
Cluster Profiles” on page 5-11.

Modify your parallel preferences to control whether a parallel pool is created automatically, and how
long it remains available before timing out. For more information on preferences, see “Specify Your
Parallel Preferences” on page 5-9.

You can run Simulink models in parallel with the parsim command instead of using parfor-loops.
For more information and examples of using Simulink in parallel, see “Run Multiple Simulations”
(Simulink).

See Also
parfor | parpool | tic | toc

More About
• “Decide When to Use parfor” on page 2-2
• “Convert for-Loops Into parfor-Loops” on page 2-7
• “Scale Up parfor-Loops to Cluster and Cloud” on page 2-21
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Run Batch Parallel Jobs
Run a Batch Job
To offload work from your MATLAB session to run in the background in another session, you can use
the batch command inside a script.

1 To create the script, type:

edit mywave
2 In the MATLAB Editor, create a for-loop:

for i = 1:1024
  A(i) = sin(i*2*pi/1024);
end

3 Save the file and close the Editor.
4 Use the batch command in the MATLAB Command Window to run your script on a separate

MATLAB worker:

job = batch('mywave')

5 batch does not block MATLAB and you can continue working while computations take place. If
you need to block MATLAB until the job finishes, use the wait function on the job object.

wait(job)
6 After the job finishes, you can retrieve and view its results. The load command transfers

variables created on the worker to the client workspace, where you can view the results:

load(job,'A')
plot(A)

7 When the job is complete, permanently delete its data and remove its reference from the
workspace:

delete(job)
clear job

batch runs your code on a local worker or a cluster worker, but does not require a parallel pool.

You can use batch to run either scripts or functions. For more details, see the batch reference page.

Run a Batch Job with a Parallel Pool
You can combine the abilities to offload a job and run a loop in a parallel pool. This example combines
the two to create a simple batch parfor-loop.

1 To create a script, type:

edit mywave
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2 In the MATLAB Editor, create a parfor-loop:

parfor i = 1:1024
  A(i) = sin(i*2*pi/1024);
end

3 Save the file and close the Editor.
4 Run the script in MATLAB with the batch command. Indicate that the script should use a

parallel pool for the loop:

job = batch('mywave','Pool',3)

This command specifies that three workers (in addition to the one running the batch script) are
to evaluate the loop iterations. Therefore, this example uses a total of four local workers,
including the one worker running the batch script. Altogether, there are five MATLAB sessions
involved, as shown in the following diagram.

5 To view the results:

wait(job)
load(job,'A')
plot(A)

The results look the same as before, however, there are two important differences in execution:

• The work of defining the parfor-loop and accumulating its results are offloaded to another
MATLAB session by batch.

• The loop iterations are distributed from one MATLAB worker to another set of workers
running simultaneously ('Pool' and parfor), so the loop might run faster than having only
one worker execute it.

6 When the job is complete, permanently delete its data and remove its reference from the
workspace:

delete(job)
clear job

1 Getting Started
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Run Script as Batch Job from the Current Folder Browser
From the Current Folder browser, you can run a MATLAB script as a batch job by browsing to the
file’s folder, right-clicking the file, and selecting Run Script as Batch Job. The batch job runs on the
cluster identified by the default cluster profile. The following figure shows the menu option to run the
script file script1.m:

Running a script as a batch from the browser uses only one worker from the cluster. So even if the
script contains a parfor loop or spmd block, it does not open an additional pool of workers on the
cluster. These code blocks execute on the single worker used for the batch job. If your batch script
requires opening an additional pool of workers, you can run it from the command line, as described in
“Run a Batch Job with a Parallel Pool” on page 1-9.

When you run a batch job from the browser, this also opens the Job Monitor. The Job Monitor is a tool
that lets you track your job in the scheduler queue. For more information about the Job Monitor and
its capabilities, see “Job Monitor” on page 5-24.

See Also
batch

Related Examples
• “Run Batch Job and Access Files from Workers”
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Distribute Arrays and Run SPMD
Distributed Arrays
The workers in a parallel pool communicate with each other, so you can distribute an array among
the workers. Each worker contains part of the array, and all the workers are aware of which portion
of the array each worker has.

Use the distributed function to distribute an array among the workers:

M = magic(4) % a 4-by-4 magic square in the client workspace
MM = distributed(M)

Now MM is a distributed array, equivalent to M, and you can manipulate or access its elements in the
same way as any other array.

M2 = 2*MM;  % M2 is also distributed, calculation performed on workers
x = M2(1,1) % x on the client is set to first element of M2

Single Program Multiple Data (spmd)
The single program multiple data (spmd) construct lets you define a block of code that runs in parallel
on all the workers in a parallel pool. The spmd block can run on some or all the workers in the pool.

spmd     % By default creates pool and uses all workers
    R = rand(4);
end

This code creates an individual 4-by-4 matrix, R, of random numbers on each worker in the pool.

Composites
Following an spmd statement, in the client context, the values from the block are accessible, even
though the data is actually stored on the workers. On the client, these variables are called Composite
objects. Each element of a composite is a symbol referencing the value (data) on a worker in the pool.
Note that because a variable might not be defined on every worker, a Composite might have
undefined elements.

Continuing with the example from above, on the client, the Composite R has one element for each
worker:

X = R{3};  % Set X to the value of R from worker 3.

The line above retrieves the data from worker 3 to assign the value of X. The following code sends
data to worker 3:

X = X + 2;
R{3} = X; % Send the value of X from the client to worker 3.

If the parallel pool remains open between spmd statements and the same workers are used, the data
on each worker persists from one spmd statement to another.

spmd
    R = R + labindex  % Use values of R from previous spmd.
end
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A typical use for spmd is to run the same code on a number of workers, each of which accesses a
different set of data. For example:

spmd
    INP = load(['somedatafile' num2str(labindex) '.mat']);
    RES = somefun(INP)
end

Then the values of RES on the workers are accessible from the client as RES{1} from worker 1,
RES{2} from worker 2, etc.

There are two forms of indexing a Composite, comparable to indexing a cell array:

• AA{n} returns the values of AA from worker n.
• AA(n) returns a cell array of the content of AA from worker n.

Although data persists on the workers from one spmd block to another as long as the parallel pool
remains open, data does not persist from one instance of a parallel pool to another. That is, if the pool
is deleted and a new one created, all data from the first pool is lost.

For more information about using distributed arrays, spmd, and Composites, see “Distributed
Arrays”.
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What Is Parallel Computing?
Parallel computing allows you to carry out many calculations simultaneously. Large problems can
often be split into smaller ones, which are then solved at the same time.

The main reasons to consider parallel computing are to

• Save time by distributing tasks and executing these simultaneously
• Solve big data problems by distributing data
• Take advantage of your desktop computer resources and scale up to clusters and cloud computing

With Parallel Computing Toolbox, you can

• Accelerate your code using interactive parallel computing tools, such as parfor and parfeval
• Scale up your computation using interactive Big Data processing tools, such as distributed,

tall, datastore, and mapreduce
• Use gpuArray to speed up your calculation on the GPU of your computer
• Use batch to offload your calculation to computer clusters or cloud computing facilities

Here are some useful Parallel Computing concepts:

• Node: standalone computer, containing one or more CPUs / GPUs. Nodes are networked to form a
cluster or supercomputer

• Thread: smallest set of instructions that can be managed independently by a scheduler. On a GPU,
multiprocessor or multicore system, multiple threads can be executed simultaneously (multi-
threading)

• Batch: off-load execution of a functional script to run in the background
• Scalability: increase in parallel speedup with the addition of more resources

What tools do MATLAB and Parallel Computing Toolbox offer?

• MATLAB workers: MATLAB computational engines that run in the background without a graphical
desktop. You use functions in the Parallel Computing Toolbox to automatically divide tasks and
assign them to these workers to execute the computations in parallel. You can run local workers to
take advantage of all the cores in your multicore desktop computer. You can also scale up to run
your workers on a cluster of machines, using the MATLAB Parallel Server. The MATLAB session
you interact with is known as the MATLAB client. The client instructs the workers with parallel
language functions.

• Parallel pool: a parallel pool of MATLAB workers created using parpool or functions with
automatic parallel support. By default, parallel language functions automatically create a parallel
pool for you when necessary. To learn more, see “Run Code on Parallel Pools” on page 2-56.

For the default local profile, the default number of workers is one per physical CPU core using a
single computational thread. This is because even though each physical core can have several
virtual cores, the virtual cores share some resources, typically including a shared floating point
unit (FPU). Most MATLAB computations use this unit because they are double-precision floating
point. Restricting to one worker per physical core ensures that each worker has exclusive access
to a floating point unit, which generally optimizes performance of computational code. If your
code is not computationally intensive, for example, it is input/output (I/O) intensive, then consider
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using up to two workers per physical core. Running too many workers on too few resources may
impact performance and stability of your machine.

• Speed up: Accelerate your code by running on multiple MATLAB workers or GPUs, for example,
using parfor, parfeval, or gpuArray.

• Scale up your data: Partition your big data across multiple MATLAB workers, using tall arrays and
distributed arrays. To learn more, see “Big Data Processing”.

• Asynchronous processing: Use parfeval to execute a computing task in the background without
waiting for it to complete.

• Scale up to clusters and clouds: If your computing task is too big or too slow for your local
computer, you can offload your calculation to a cluster onsite or in the cloud using MATLAB
Parallel Server. For more information, see “Clusters and Clouds”.

See Also

Related Examples
• “Choose a Parallel Computing Solution” on page 1-16
• “Identify and Select a GPU Device” on page 8-19
• “Decide When to Use parfor” on page 2-2
• “Run Single Programs on Multiple Data Sets” on page 3-2
• “Evaluate Functions in the Background Using parfeval” on page 1-23
• “Distributing Arrays to Parallel Workers” on page 3-10
• “Run Batch Parallel Jobs” on page 1-9
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Choose a Parallel Computing Solution
Process your data faster or scale up your big data computation using the capabilities of MATLAB,
Parallel Computing Toolbox and MATLAB Parallel Server.

Problem Solutions Required Products More Information
Do you want
to process
your data
faster?

Profile your code. MATLAB “Profile Your Code to Improve
Performance” (MATLAB)

Vectorize your code. MATLAB “Vectorization” (MATLAB)
Use automatic parallel
computing support in
MathWorks products.

MATLAB

Parallel Computing
Toolbox

“Run MATLAB Functions with
Automatic Parallel Support” on
page 1-20

If you have a GPU, try
gpuArray.

MATLAB

Parallel Computing
Toolbox

“Run MATLAB Functions on a
GPU” on page 8-9

Use parfor. MATLAB

Parallel Computing
Toolbox

“Interactively Run a Loop in
Parallel Using parfor” on page 1-
7

Are you
looking for
other ways to
speed up your
processing?

Try parfeval. MATLAB

Parallel Computing
Toolbox

“Evaluate Functions in the
Background Using parfeval” on
page 1-23

Try spmd. MATLAB

Parallel Computing
Toolbox

“Run Single Programs on
Multiple Data Sets” on page 3-
2

Do you want
to scale up
your big data
calculation?

To work with out-of-
memory data with any
number of rows, use tall
arrays.

This workflow is well
suited to data analytics and
machine learning.

MATLAB “Big Data Workflow Using Tall
Arrays and Datastores” on page
5-46

Use tall arrays in parallel
on your local machine.

MATLAB

Parallel Computing
Toolbox

“Use Tall Arrays on a Parallel
Pool” on page 5-48

Use tall arrays in parallel
on your cluster.

MATLAB

Parallel Computing
Toolbox

MATLAB Parallel
Server

“Use Tall Arrays on a Spark
Enabled Hadoop Cluster” on
page 5-51
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Problem Solutions Required Products More Information
If your data is large in
multiple dimensions, use
distributed instead.

This workflow is well
suited to linear algebra
problems.

MATLAB

Parallel Computing
Toolbox

MATLAB Parallel
Server

“Run MATLAB Functions with
Distributed Arrays” on page 4-
19

Do you want
to offload to a
cluster?

Use batch to run your
code on clusters and
clouds.

MATLAB Parallel
Server

“Run Batch Parallel Jobs” on
page 1-9
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See Also

Related Examples
• “Profile Your Code to Improve Performance” (MATLAB)
• “Vectorization” (MATLAB)
• Built-in Parallel Computing Support
• “Identify and Select a GPU Device” on page 8-19
• “Interactively Run a Loop in Parallel Using parfor” on page 1-7
• “Evaluate Functions in the Background Using parfeval” on page 1-23
• “Run Single Programs on Multiple Data Sets” on page 3-2
• “Big Data Workflow Using Tall Arrays and Datastores” on page 5-46
• “Use Tall Arrays on a Parallel Pool” on page 5-48
• “Use Tall Arrays on a Spark Enabled Hadoop Cluster” on page 5-51
• “Distributing Arrays to Parallel Workers” on page 3-10
• “Run Batch Parallel Jobs” on page 1-9
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Run MATLAB Functions with Automatic Parallel Support
Several MATLAB and Simulink products have a growing number of functions and features that help
you take advantage of parallel computing resources without requiring any extra coding. You can
enable this support by simply setting a flag or preference.

To take advantage of this functionality on your desktop, you need Parallel Computing Toolbox. Run
calculations in parallel using local workers to speed up large calculations. To scale the parallel
computing to larger resources such as computer clusters, you also need MATLAB Parallel Server.

• Some functions run automatically in parallel by default. For example, parfor, parsim, and tall.

• Many other functions run automatically in parallel if you set an option to use parallel.

When you run a function with parallel enabled, MATLAB automatically opens a parallel pool of
workers. MATLAB runs the computation across the available workers.

Automatic parallel support starts a parallel pool of workers using the default cluster profile. If you
have not touched your parallel preferences, the default profile is local. Control parallel behavior with
the parallel preferences, including scaling up to a cluster, automatic pool creation, and preferred
number of workers.

Find Automatic Parallel Support
• On function pages, find information under Extended Capabilities.
• You can browse supported functions from all MathWorks® products at the following link: All

Functions List (Automatic Parallel Support). Alternatively, you can filter by product. On the Help
bar, click the Functions tab, select a product, and select the check box Automatic Parallel
Support. For example, for a filtered list of all Statistics and Machine Learning Toolbox™ functions
with automatic parallel support, see Function List (Automatic Parallel Support). If you select a
product that does not have functions with automatic parallel support, then the Automatic
Parallel Support filter is not available.

If a function you are interested in does not include automatic parallel support, there are the
alternatives:

• If you have a GPU, many MATLAB functions run automatically on a GPU. See “Run MATLAB
Functions on a GPU” on page 8-9.

• Any MATLAB code inside a for-loop can be made into a parallel for loop, provided the iterations
are independent. See parfor.

• If you are you looking for other ways to speed up your processing or to scale up your big data
calculation, see “Choose a Parallel Computing Solution” on page 1-16.

See Also

Related Examples
• “Specify Your Parallel Preferences” on page 5-9
• “Run Code on Parallel Pools” on page 2-56
• “Scale up from Desktop to Cluster”
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More About
• “Run MATLAB Functions on a GPU” on page 8-9
• “Parallel for-Loops (parfor)”
• “Choose a Parallel Computing Solution” on page 1-16
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Run Non-Blocking Code in Parallel Using parfeval

You can execute a function on one or all parallel pool workers, without waiting for it to complete,
using parfeval or parfevalOnAll. This can be useful if you want to be able to plot intermediate
results. In addition, parfeval allows you to break out of a loop early, if you have established that
your results are good enough. This may be convenient in e.g. optimization procedures. Note that this
is different from using parfor, where you have to wait for the loop to complete.
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Evaluate Functions in the Background Using parfeval
This example shows how you can use parfeval to evaluate a function in the background and to
collect results as they become available. In this example, you submit a vector of multiple future
requests in a for-loop and retrieve the individual future outputs as they become available.

p = gcp();
% To request multiple evaluations, use a loop.
for idx = 1:10
  f(idx) = parfeval(p,@magic,1,idx); % Square size determined by idx
end
% Collect the results as they become available.
magicResults = cell(1,10);
for idx = 1:10
  % fetchNext blocks until next results are available.
  [completedIdx,value] = fetchNext(f);
  magicResults{completedIdx} = value;
  fprintf('Got result with index: %d.\n', completedIdx);
end
 

Got result with index: 1.
Got result with index: 2.
Got result with index: 3.
Got result with index: 4.
Got result with index: 5.
Got result with index: 6.
Got result with index: 7.
Got result with index: 8.
Got result with index: 9.
Got result with index: 10.

See Also

Related Examples
• “Parfeval Blackjack”
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Use Parallel Computing Toolbox with Cloud Center clusters in
MATLAB Online

You can run your parallel code in MATLAB Online. To access MATLAB Online, follow this link: https://
matlab.mathworks.com.

To use Parallel Computing Toolbox functionality in MATLAB Online, you must have access to a Cloud
Center cluster. You can:

• Create a cloud cluster. For more information, see “Create Cloud Cluster” on page 5-14.
• Discover an existing cluster. For more information, see “Discover Clusters” on page 5-12. You can

only discover Cloud Center clusters in your MathWorks Account.
• Import a cloud cluster profile. For more information, see “Import and Export Cluster Profiles” on

page 5-18. Note that if the profile is not in your MATLAB Drive™, you must upload it first. On the
Home tab, in the File area, click Upload.

Note The local profile is not supported in MATLAB Online.

After you set up a cloud cluster, you can use parallel language functions, such as parfor or
parfeval. Note that if you do not have any clusters set up, then parallel functions that require a
parallel pool run in serial or error.

Other considerations include:

• The parallel status indicator is not visible by default. You must start a parallel pool first by using
parpool or any of the functions that automatically start a parallel pool.

• The Parallel Computing Toolbox Preferences options pane is not available in MATLAB Online.

See Also

Related Examples
• “Run Code on Parallel Pools” on page 2-56
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Parallel for-Loops (parfor)

• “Decide When to Use parfor” on page 2-2
• “Convert for-Loops Into parfor-Loops” on page 2-7
• “Ensure That parfor-Loop Iterations are Independent” on page 2-10
• “Nested parfor and for-Loops and Other parfor Requirements” on page 2-13
• “Scale Up parfor-Loops to Cluster and Cloud” on page 2-21
• “Use parfor-Loops for Reduction Assignments” on page 2-26
• “Use Objects and Handles in parfor-Loops” on page 2-27
• “Troubleshoot Variables in parfor-Loops” on page 2-29
• “Loop Variables” on page 2-35
• “Sliced Variables” on page 2-37
• “Broadcast Variables” on page 2-41
• “Reduction Variables” on page 2-42
• “Temporary Variables” on page 2-48
• “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-50
• “Improve parfor Performance” on page 2-52
• “Run Code on Parallel Pools” on page 2-56
• “Choose Between Thread-Based and Process-Based Environments” on page 2-61
• “Repeat Random Numbers in parfor-Loops” on page 2-70
• “Recommended System Limits for Macintosh and Linux” on page 2-71
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Decide When to Use parfor

In this section...
“parfor-Loops in MATLAB” on page 2-2
“Deciding When to Use parfor” on page 2-2
“Example of parfor With Low Parallel Overhead” on page 2-3
“Example of parfor With High Parallel Overhead” on page 2-4

parfor-Loops in MATLAB
A parfor-loop in MATLAB executes a series of statements in the loop body in parallel. The MATLAB
client issues the parfor command and coordinates with MATLAB workers to execute the loop
iterations in parallel on the workers in a parallel pool. The client sends the necessary data on which
parfor operates to workers, where most of the computation is executed. The results are sent back to
the client and assembled.

A parfor-loop can provide significantly better performance than its analogous for-loop, because
several MATLAB workers can compute simultaneously on the same loop.

Each execution of the body of a parfor-loop is an iteration. MATLAB workers evaluate iterations in
no particular order and independently of each other. Because each iteration is independent, there is
no guarantee that the iterations are synchronized in any way, nor is there any need for this. If the
number of workers is equal to the number of loop iterations, each worker performs one iteration of
the loop. If there are more iterations than workers, some workers perform more than one loop
iteration; in this case, a worker might receive multiple iterations at once to reduce communication
time.

Deciding When to Use parfor
A parfor-loop can be useful if you have a slow for-loop. Consider parfor if you have:

• Some loop iterations that take a long time to execute. In this case, the workers can execute the
long iterations simultaneously. Make sure that the number of iterations exceeds the number of
workers. Otherwise, you will not use all workers available.

• Many loop iterations of a simple calculation, such as a Monte Carlo simulation or a parameter
sweep. parfor divides the loop iterations into groups so that each worker executes some portion
of the total number of iterations.

A parfor-loop might not be useful if you have:

• Code that has vectorized out the for-loops. Generally, if you want to make code run faster, first try
to vectorize it. For details how to do this, see “Vectorization” (MATLAB). Vectorizing code allows
you to benefit from the built-in parallelism provided by the multithreaded nature of many of the
underlying MATLAB libraries. However, if you have vectorized code and you have access only to
local workers, then parfor-loops may run slower than for-loops. Do not devectorize code to
allow for parfor; in general, this solution does not work well.

• Loop iterations that take a short time to execute. In this case, parallel overhead dominates your
calculation.

2 Parallel for-Loops (parfor)
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You cannot use a parfor-loop when an iteration in your loop depends on the results of other
iterations. Each iteration must be independent of all others. For help dealing with independent loops,
see “Ensure That parfor-Loop Iterations are Independent” on page 2-10. The exception to this rule is
to accumulate values in a loop using “Reduction Variables” on page 2-42.

In deciding when to use parfor, consider parallel overhead. Parallel overhead includes the time
required for communication, coordination and data transfer — sending and receiving data — from
client to workers and back. If iteration evaluations are fast, this overhead could be a significant part
of the total time. Consider two different types of loop iterations:

• for-loops with a computationally demanding task. These loops are generally good candidates for
conversion into a parfor-loop, because the time needed for computation dominates the time
required for data transfer.

• for-loops with a simple computational task. These loops generally do not benefit from conversion
into a parfor-loop, because the time needed for data transfer is significant compared with the
time needed for computation.

Example of parfor With Low Parallel Overhead
In this example, you start with a computationally demanding task inside a for-loop. The for-loops
are slow, and you speed up the calculation using parfor-loops instead. parfor splits the execution
of for-loop iterations over the workers in a parallel pool.

This example calculates the spectral radius of a matrix and converts a for-loop into a parfor-loop.
Find out how to measure the resulting speedup and how much data is transferred to and from the
workers in the parallel pool.

1 In the MATLAB Editor, enter the following for-loop. Add tic and toc to measure the
computation time.

tic
n = 200;
A = 500;
a = zeros(n);
for i = 1:n
    a(i) = max(abs(eig(rand(A))));
end
toc

2 Run the script, and note the elapsed time.
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Elapsed time is 31.935373 seconds.
3 In the script, replace the for-loop with a parfor-loop. Add ticBytes and tocBytes to

measure how much data is transferred to and from the workers in the parallel pool.

tic
ticBytes(gcp);
n = 200;
A = 500;
a = zeros(n);
parfor i = 1:n
    a(i) = max(abs(eig(rand(A))));
end
tocBytes(gcp)
toc

4 Run the new script on four workers, and run it again. Note that the first run is slower than the
second run, because the parallel pool takes some time to start and make the code available to the
workers. Note the data transfer and elapsed time for the second run.

By default, MATLAB automatically opens a parallel pool of workers on your local machine.

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
...
             BytesSentToWorkers    BytesReceivedFromWorkers
             __________________    ________________________

    1        15340                  7024                   
    2        13328                  5712                   
    3        13328                  5704                   
    4        13328                  5728                   
    Total    55324                 24168                   

Elapsed time is 10.760068 seconds. 

The parfor run on four workers is about three times faster than the corresponding for-loop
calculation. The speed-up is smaller than the ideal speed-up of a factor of four on four workers.
This is due to parallel overhead, including the time required to transfer data from the client to
the workers and back. Use the ticBytes and tocBytes results to examine the amount of data
transferred. Assume that the time required for data transfer is proportional to the size of the
data. This approximation allows you to get an indication of the time required for data transfer,
and to compare your parallel overhead with other parfor-loop iterations. In this example, the
data transfer and parallel overhead are small in comparison with the next example.

The current example has a low parallel overhead and benefits from conversion into a parfor-loop.
Compare this example with the simple loop iteration in the next example, see “Example of parfor With
High Parallel Overhead” on page 2-4.

For another example of a parfor-loop with computationally demanding tasks, see “Nested parfor and
for-Loops and Other parfor Requirements” on page 2-13

Example of parfor With High Parallel Overhead
In this example, you write a loop to create a simple sine wave. Replacing the for-loop with a parfor-
loop does not speed up your calculation. This loop does not have a lot of iterations, it does not take
long to execute and you do not notice an increase in execution speed. This example has a high
parallel overhead and does not benefit from conversion into a parfor-loop.
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1 Write a loop to create a sine wave. Use tic and toc to measure the time elapsed.

tic
n = 1024;
A = zeros(n);
for i = 1:n
    A(i,:) = (1:n) .* sin(i*2*pi/1024);
end
toc

Elapsed time is 0.012501 seconds.
2 Replace the for-loop with a parfor-loop. Add ticBytes and tocBytes to measure how much

data is transferred to and from the workers in the parallel pool.

tic
ticBytes(gcp);
n = 1024;
A = zeros(n);
parfor (i = 1:n)
    A(i,:) = (1:n) .* sin(i*2*pi/1024);
end
tocBytes(gcp)
toc

3 Run the script on four workers and run the code again. Note that the first run is slower than the
second run, because the parallel pool takes some time to start and make the code available to the
workers. Note the data transfer and elapsed time for the second run.

             BytesSentToWorkers    BytesReceivedFromWorkers
             __________________    ________________________

    1        13176                 2.0615e+06              
    2        15188                 2.0874e+06              
    3        13176                 2.4056e+06              
    4        13176                 1.8567e+06              
    Total    54716                 8.4112e+06              

Elapsed time is 0.743855 seconds.

Note that the elapsed time is much smaller for the serial for-loop than for the parfor-loop on
four workers. In this case, you do not benefit from turning your for-loop into a parfor-loop. The
reason is that the transfer of data is much greater than in the previous example, see “Example of
parfor With Low Parallel Overhead” on page 2-3. In the current example, the parallel overhead
dominates the computing time. Therefore the sine wave iteration does not benefit from
conversion into a parfor-loop.

This example illustrates why high parallel overhead calculations do not benefit from conversion into a
parfor-loop. To learn more about speeding up your code, see “Convert for-Loops Into parfor-Loops”
on page 2-7

See Also
parfor | ticBytes | tocBytes

Related Examples
• “Interactively Run a Loop in Parallel Using parfor” on page 1-7

 Decide When to Use parfor

2-5



• “Convert for-Loops Into parfor-Loops” on page 2-7
• “Ensure That parfor-Loop Iterations are Independent” on page 2-10
• “Nested parfor and for-Loops and Other parfor Requirements” on page 2-13
• “Scale Up parfor-Loops to Cluster and Cloud” on page 2-21
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Convert for-Loops Into parfor-Loops
In some cases, you must modify the code to convert for-loops to parfor-loops. This example shows
how to diagnose and fix parfor-loop problems using a simple nested for-loop. Run this code in
MATLAB and examine the results.

for x = 0:0.1:1
   for k = 2:10
    x(k) = x(k-1) + k;
   end
   x
end

To speed up the code, try to convert the for-loops to parfor-loops. Observe that this code produces
errors.

parfor x = 0:0.1:1
   parfor k = 2:10
    x(k) = x(k-1) + k;
   end
   x
end

In this case you cannot simply convert the for-loops to parfor-loops without modification. To make
this work, you must change the code in several places. To diagnose the problems, look for Code
Analyzer messages in the MATLAB Editor.

This code shows common problems when you try to convert for-loops to parfor-loops.
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To solve these problems, you must modify the code to use parfor. The body of the parfor-loop is
executed in a parallel pool using multiple MATLAB workers in a nondeterministic order. Therefore,
you have to meet these requirements for the body of the parfor-loop:

1 The body of the parfor-loop must be independent. One loop iteration cannot depend on a
previous iteration, because the iterations are executed in parallel in a nondeterministic order. In
the example,

x(k) = x(k-1) + k;

is not independent, and therefore you cannot use parfor. For next steps in dealing with
independence issues, see “Ensure That parfor-Loop Iterations are Independent” on page 2-10.

2 You cannot nest a parfor-loop inside another parfor-loop. The example has two nested for-
loops, and therefore you can replace only one for-loop with a parfor-loop. Instead, you can call
a function that uses a parfor-loop inside the body of the other parfor-loop. However, such
nested parfor-loops give you no computational benefit, because all workers are used to
parallelize the outermost loop. For help dealing with nested loops, see “Nested parfor and for-
Loops and Other parfor Requirements” on page 2-13.

3 parfor-loop variables must be consecutive increasing integers. In the example,

parfor x = 0:0.1:1

has non-integer loop variables, and therefore you cannot use parfor here. You can solve this
problem by changing the value of the loop variable to integer values required by the algorithm.
For next steps in troubleshooting parfor-loop variables, see “Ensure That parfor-Loop Variables
Are Consecutive Increasing Integers” on page 2-29.

4 You cannot break out of a parfor-loop early, as you can in a for-loop. Do not include a return or
break statement in the body of your parfor-loop. Without communication, the other MATLAB
instances running the loop do not know when to stop. As an alternative, consider parfeval.

If you still have problems converting for-loops to parfor-loops, see “Troubleshoot Variables in
parfor-Loops” on page 2-29.

Tip You can profile a parfor-loops using tic and toc to measure the speedup compared to the
corresponding for-loop. Use ticBytes and tocBytes to measure how much data is transferred to
and from the workers in the parallel pool. For more information and examples, see “Profiling parfor-
loops” on page 2-53.
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See Also
parfor | ticBytes | tocBytes

Related Examples
• “Decide When to Use parfor” on page 2-2
• “Ensure That parfor-Loop Iterations are Independent” on page 2-10
• “Nested parfor and for-Loops and Other parfor Requirements” on page 2-13
• “Troubleshoot Variables in parfor-Loops” on page 2-29
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Ensure That parfor-Loop Iterations are Independent
If you get an error when you convert for-loops to parfor-loops, ensure that your parfor-loop
iterations are independent. parfor-loop iterations have no guaranteed order, while the iteration
order in for-loops is sequential. Also parfor-loop iterations are performed on different MATLAB
workers in the parallel pool, so that there is no sharing of information between iterations. Therefore
one parfor-loop iteration must not depend on the result of a previous iteration. The only exception
to this rule is to accumulate values in a loop using “Reduction Variables” on page 2-42.

The following example produces equivalent results, using a for-loop on the left and a parfor-loop
on the right. Try the example in your MATLAB Command Window:

clear A
for i = 1:8
   A(i) = i;
end
A

A =

     1     2     3     4     5     6     7     8

clear A
parfor i = 1:8
   A(i) = i;
end
A

A =

     1     2     3     4     5     6     7     8

Each element of A is equal to its index. The parfor-loop works because each element is determined
by the indexed loop variable only and does not depend on other variables. for-loops with
independent tasks are ideal candidates for parfor-loops.

Note By default, parfor automatically starts a parallel pool of workers, if you have not started one
already. parfor creates a pool using your default cluster profile, if you have set your parallel
preferences accordingly.

In the example, the array elements are available in the client workspace after the parfor-loop,
exactly as with a for-loop.

Now use a nonindexed variable inside the loop, or a variable whose indexing does not depend on the
loop variable i. Try these examples, and note the values of d and i afterward:
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clear A
d = 0; i = 0;
for i = 1:4
   d = i*2;
   A(i) = d;
end
A
d
i

A =

     2     4     6     8

d =

     8

i =

     4

clear A
d = 0; i = 0;
parfor i = 1:4
   d = i*2;
   A(i) = d;
end
A
d
i

A =

     2     4     6     8

d =

     0

i =

     0

Although the elements of A are the same in both examples, the value of d is not. In the for-loop, the
iterations are executed sequentially, so afterward d has the value it held in the last iteration of the
loop. In the parfor-loop, however, the iterations execute in parallel, so it is impossible to assign d a
defined value at the end of the loop. This situation also applies to the loop variable i. Therefore,
parfor-loop behavior is defined so that it does not affect the values d and i outside the loop. Their
values remain the same before and after the loop. If the variables in your parfor-loop are not
independent, then you might get different answers from those in the for-loop. In summary, a
parfor-loop requires that each iteration be independent of the other iterations. All code that follows
the parfor statement should not depend on the loop iteration sequence.

Code Analyzer can help diagnose whether the loop iterations are dependent. The code in the example
shows iterations defined in terms of the previous iteration:

   parfor k = 2:10
    x(k) = x(k-1) + k;
   end

Look for Code Analyzer messages in the MATLAB Editor. In this case, Code Analyzer reports the
dependency problem.

In other cases, however, Code Analyzer is unable to mark dependencies.

For help with other common parfor problems, see “Nested parfor and for-Loops and Other parfor
Requirements” on page 2-13.

See Also
parfor
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Related Examples
• “Decide When to Use parfor” on page 2-2
• “Convert for-Loops Into parfor-Loops” on page 2-7
• “Nested parfor and for-Loops and Other parfor Requirements” on page 2-13
• “Troubleshoot Variables in parfor-Loops” on page 2-29
• “Reduction Variables” on page 2-42

More About
• “Evaluate Functions in the Background Using parfeval” on page 1-23
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Nested parfor and for-Loops and Other parfor Requirements
In this section...
“Nested parfor-Loops” on page 2-13
“Convert Nested for-Loops to parfor-Loops” on page 2-14
“Nested for-Loops: Requirements and Limitations” on page 2-16
“parfor-Loop Limitations” on page 2-17

Nested parfor-Loops
You cannot use a parfor-loop inside another parfor-loop. As an example, the following nesting of
parfor-loops is not allowed:

   parfor i = 1:10
       parfor j = 1:5
           ...
       end
   end

Tip You cannot nest parfor directly within another parfor-loop. A parfor-loop can call a function
that contains a parfor-loop, but you do not get any additional parallelism.

Code Analyzer in the MATLAB Editor flags the use of parfor inside another parfor-loop:

You cannot nest parfor-loops because parallelization can be performed at only one level. Therefore,
choose which loop to run in parallel, and convert the other loop to a for-loop.

Consider the following performance issues when dealing with nested loops:

• Parallel processing incurs overhead. Generally, you should run the outer loop in parallel, because
overhead only occurs once. If you run the inner loop in parallel, then each of the multiple parfor
executions incurs an overhead. See “Convert Nested for-Loops to parfor-Loops” on page 2-14 for
an example how to measure parallel overhead.

• Make sure that the number of iterations exceeds the number of workers. Otherwise, you do not
use all available workers.

• Try to balance the parfor-loop iteration times. parfor tries to compensate for some load
imbalance.

Tip Always run the outermost loop in parallel, because you reduce parallel overhead.

You can also use a function that uses parfor and embed it in a parfor-loop. Parallelization occurs
only at the outer level. In the following example, call a function MyFun.m inside the outer parfor-
loop. The inner parfor-loop embedded in MyFun.m runs sequentially, not in parallel.

parfor i = 1:10
    MyFun(i)
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end

function MyFun(i)
parfor j = 1:5
    ...
end
end

Tip Nested parfor-loops generally give you no computational benefit.

Convert Nested for-Loops to parfor-Loops
A typical use of nested loops is to step through an array using a one-loop variable to index one
dimension, and a nested-loop variable to index another dimension. The basic form is:

X = zeros(n,m);
for a = 1:n
    for b = 1:m
        X(a,b) = fun(a,b)
    end
end

The following code shows a simple example. Use tic and toc to measure the computing time
needed.

A = 100;
tic
for i = 1:100
    for j = 1:100
        a(i,j) = max(abs(eig(rand(A))));
    end
end
toc

Elapsed time is 49.376732 seconds.

You can parallelize either of the nested loops, but you cannot run both in parallel. The reason is that
the workers in a parallel pool cannot start or access further parallel pools.

If the loop counted by i is converted to a parfor-loop, then each worker in the pool executes the
nested loops using the j loop counter. The j loops themselves cannot run as a parfor on each
worker.

Because parallel processing incurs overhead, you must choose carefully whether you want to convert
either the inner or the outer for-loop to a parfor-loop. The following example shows how to
measure the parallel overhead.

First convert only the outer for-loop to a parfor-loop. Use tic and toc to measure the computing
time needed. Use ticBytes and tocBytes to measure how much data is transferred to and from the
workers in the parallel pool.

Run the new code, and run it again. The first run is slower than subsequent runs, because the parallel
pool takes some time to start and make the code available to the workers.

A = 100;
tic
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ticBytes(gcp);
parfor i = 1:100
    for j = 1:100
        a(i,j) = max(abs(eig(rand(A))));
    end
end
tocBytes(gcp)
toc

             BytesSentToWorkers    BytesReceivedFromWorkers
             __________________    ________________________

    1             32984                 24512              
    2             33784                 25312              
    3             33784                 25312              
    4             34584                 26112              
    Total    1.3514e+05            1.0125e+05              

Elapsed time is 14.130674 seconds.

Next convert only the inner loop to a parfor-loop. Measure the time needed and data transferred as
in the previous case.

A = 100;
tic
ticBytes(gcp);
for i = 1:100
    parfor j = 1:100
        a(i,j) = max(abs(eig(rand(A))));
    end
end
tocBytes(gcp)
toc

             BytesSentToWorkers    BytesReceivedFromWorkers
             __________________    ________________________

    1        1.3496e+06             5.487e+05              
    2        1.3496e+06            5.4858e+05              
    3        1.3677e+06            5.6034e+05              
    4        1.3476e+06            5.4717e+05              
    Total    5.4144e+06            2.2048e+06              

Elapsed time is 48.631737 seconds.

If you convert the inner loop to a parfor-loop, both the time and amount of data transferred are
much greater than in the parallel outer loop. In this case, the elapsed time is almost the same as in
the nested for-loop example. The speedup is smaller than running the outer loop in parallel, because
you have more data transfer and thus more parallel overhead. Therefore if you execute the inner loop
in parallel, you get no computational benefit compared to running the serial for-loop.

If you want to reduce parallel overhead and speed up your computation, run the outer loop in
parallel.

If you convert the inner loop instead, then each iteration of the outer loop initiates a separate
parfor-loop. That is, the inner loop conversion creates 100 parfor-loops. Each of the multiple
parfor executions incurs overhead. If you want to reduce parallel overhead, you should run the
outer loop in parallel instead, because overhead only occurs once.
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Tip If you want to speed up your code, always run the outer loop in parallel, because you reduce
parallel overhead.

Nested for-Loops: Requirements and Limitations
If you want to convert a nested for-loop to a parfor-loop, you must ensure that your loop variables
are properly classified, see “Troubleshoot Variables in parfor-Loops” on page 2-29. If your code does
not adhere to the guidelines and restrictions labeled as Required, you get an error. MATLAB catches
some of these errors at the time it reads the code, and others when it executes the code. These errors
are labeled as Required (static) or Required (dynamic) respectively.

Required (static): You must define the range of a for-loop nested in a parfor-loop by constant
numbers or broadcast variables.

In the following example, the code on the left does not work because you define the upper limit of the
for-loop by a function call. The code on the right provides a workaround by first defining a broadcast
or constant variable outside the parfor-loop:

Invalid Valid
A = zeros(100, 200);
parfor i = 1:size(A, 1)
   for j = 1:size(A, 2)
      A(i, j) = i + j;
   end
end

A = zeros(100, 200);
n = size(A, 2);
parfor i = 1:size(A,1)
   for j = 1:n
      A(i, j) = i + j;
   end
end

Required (static): The index variable for the nested for-loop must never be explicitly assigned
other than by its for statement.

This restriction is required, because changing the nested for-loop variable in the loop body cannot
guarantee that the region indexed by the for-loop variable is available at each worker.

The code on the left is not valid because it tries to modify the value of the nested for-loop variable j
in the body of the loop. The code on the right provides a workaround by assigning the nested for-
loop variable to a temporary variable t, and then updating t.

Invalid Valid
A = zeros(10); 
parfor i = 1:10 
   for j = 1:10 
       A(i, j) = 1; 
       j = j+1; 
   end
end

A = zeros(10); 
parfor i = 1:10 
   for j = 1:10 
    A(i, j) = 1;  
    t = j;
    t = t + 1;
   end
end

Required (static): You cannot index or subscript a nested for-loop variable.

This restriction is required, because indexing a loop variable cannot guarantee the independence of
iterations.
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The example on the left is invalid because it attempts to index the nested for-loop variable j. The
example on the right removes this indexing.

Invalid Valid
A = zeros(10); 
parfor i = 1:10 
   for j = 1:10 
       j(1);
   end
end

A = zeros(10); 
parfor i = 1:10 
   for j = 1:10 
       j;
   end
end

Required (static): When using the nested for-loop variable for indexing a sliced array, you must
use the variable in plain form, not as part of an expression.

For example, the following code on the left does not work, but the code on the right does:

Invalid Valid
A = zeros(4, 11);
parfor i = 1:4
   for j = 1:10
      A(i, j + 1) = i + j;
   end
end

A = zeros(4, 11);
parfor i = 1:4
   for j = 2:11
      A(i, j) = i + j - 1;
   end
end

Required (static): If you use a nested for-loop to index into a sliced array, you cannot use that
array elsewhere in the parfor-loop.

In the following example, the code on the left does not work because A is sliced and indexed inside
the nested for-loop. The code on the right works because v is assigned to A outside of the nested
loop:

Invalid Valid
A = zeros(4, 10);
parfor i = 1:4
    for j = 1:10
        A(i, j) = i + j;
    end
    disp(A(i, j))
end

A = zeros(4, 10);
parfor i = 1:4
    v = zeros(1, 10);
    for j = 1:10
        v(j) = i + j;
    end
    disp(v(j))
    A(i, :) = v;
end

parfor-Loop Limitations
Nested Functions

The body of a parfor-loop cannot reference a nested function. However, it can call a nested function
by a function handle. Try the following example. Note that A(idx) = nfcn(idx) in the parfor-
loop does not work. You must use feval to invoke the fcn handle in the parfor-loop body.

function A = pfeg
    function out = nfcn(in)
        out = 1 + in;
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    end

fcn = @nfcn;

parfor idx = 1:10
    A(idx) = feval(fcn, idx); 
end

end

>> pfeg
Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

ans =

     2     3     4     5     6     7     8     9    10    11

Tip If you use function handles that refer to nested functions inside a parfor-loop, then the values
of externally scoped variables are not synchronized among the workers.

Nested parfor-Loops

The body of a parfor-loop cannot contain a parfor-loop. For more information, see “Nested parfor-
Loops” on page 2-13.

Nested spmd Statements

The body of a parfor-loop cannot contain an spmd statement, and an spmd statement cannot contain
a parfor-loop. The reason is that workers cannot start or access further parallel pools.

break and return Statements

The body of a parfor-loop cannot contain break or return statements. Consider parfeval or
parfevalOnAll instead, because you can use cancel on them.

Global and Persistent Variables

The body of a parfor-loop cannot contain global or persistent variable declarations. The reason
is that these variables are not synchronized between workers. You can use global or persistent
variables within functions, but their value is visible only to the worker that creates them. Instead of
global variables, it is a better practice to use function arguments to share values.

To learn more about variable requirements, see “Troubleshoot Variables in parfor-Loops” on page 2-
29.

Scripts

If a script introduces a variable, you cannot call this script from within a parfor-loop or spmd
statement. The reason is that this script would cause a transparency violation. For more details, see
“Ensure Transparency in parfor-Loops or spmd Statements” on page 2-50.
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Anonymous Functions

You can define an anonymous function inside the body of a parfor-loop. However, sliced output
variables inside anonymous functions are not supported. You can work around this by using a
temporary variable for the sliced variable, as shown in the following example.

x = 1:10;
parfor i=1:10
    temp = x(i);
    anonymousFunction = @() 2*temp;
    x(i) = anonymousFunction() + i;
end
disp(x);

For more information on sliced variables, see “Sliced Variables” on page 2-37.

inputname Functions

Using inputname to return the workspace variable name corresponding to an argument number is
not supported inside parfor-loops. The reason is that parfor workers do not have access to the
workspace of the MATLAB desktop. To work around this, call inputname before parfor, as shown in
the following example.

a = 'a';
myFunction(a)

function X = myFunction(a)
name = inputname(1);

parfor i=1:2
    X(i).(name) = i;
end
end
    

load Functions

The syntaxes of load that do not assign to an output structure are not supported inside parfor-
loops. Inside parfor, always assign the output of load to a structure.

nargin or nargout Functions

The following uses are not supported inside parfor-loops:

• Using nargin or nargout without a function argument
• Using narginchk or nargoutchk to validate the number of input or output arguments in a call to

the function that is currently executing

The reason is that workers do not have access to the workspace of the MATLAB desktop. To work
around this, call these functions before parfor, as shown in the following example.

myFunction('a','b')

function X = myFunction(a,b)
nin = nargin;
parfor i=1:2
    X(i) = i*nin;
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end
end
    

P-Code Scripts

You can call P-code script files from within a parfor-loop, but P-code scripts cannot contain a
parfor-loop. To work around this, use a P-code function instead of a P-code script.

See Also
parfeval | parfevalOnAll | parfor

Related Examples
• “Decide When to Use parfor” on page 2-2
• “Convert for-Loops Into parfor-Loops” on page 2-7
• “Ensure That parfor-Loop Iterations are Independent” on page 2-10
• “Troubleshoot Variables in parfor-Loops” on page 2-29
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Scale Up parfor-Loops to Cluster and Cloud
In this example, you start on your local multicore desktop and measure the time required to run a
calculation, as a function of increasing numbers of workers. The test is called a strong scaling test. It
enables you to measure the decrease in time required for the calculation if you add more workers.
This dependence is known as speedup, and allows you to estimate the parallel scalability of your
code. You can then decide whether it is useful to increase the number of workers in your parallel
pool, and scale up to cluster and cloud computing.

1 Create the function.

  edit MyCode
2 In the MATLAB Editor, enter the new parfor-loop and add tic and toc to measure the time

elapsed.

function a = MyCode(A)

tic
parfor i = 1:200
    a(i) = max(abs(eig(rand(A))));
end
toc

3 Save the file, and close the Editor.
4 On the Parallel > Parallel Preferences menu, check that your Default Cluster is local (your

desktop machine).
5 In the MATLAB Command Window, define a parallel pool of size 1, and run your function on one

worker to calculate the elapsed time. Note the elapsed time for a single worker and shut down
your parallel pool.

parpool(1);
a = MyCode(1000);

Elapsed time is 172.529228 seconds.

delete(gcp);
6 Open a new parallel pool of two workers, and run the function again.

parpool(2);
a = MyCode(1000);

Note the elapsed time; you should see that this now has decreased compared to the single
worker case.

7 Try 4, 8, 12 and 16 workers. Measure the parallel scalability by plotting the elapsed time for each
number of workers on a log-log scale.
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The figure shows the scalability for a typical multicore desktop PC (blue circle data points). The
strong scaling test shows almost linear speedup and significant parallel scalability for up to eight
workers. Observe from the figure that, in this case, we do not achieve further speedup for more
than eight workers. This result means that, on a local desktop machine, all cores are fully used
for 8 workers. You can get a different result on your local desktop, depending on your hardware.
To further speed up your parallel application, consider scaling up to cloud or cluster computing.

8 If you have exhausted your local workers, as in the previous example, you can scale up your
calculation to cloud computing. Check your access to cloud computing from the Parallel >
Discover Clusters menu.

Open a parallel pool in the cloud and run your application without changing your code.

parpool(16);
a = MyCode(1000);

Note the elapsed time for increasing numbers of cluster workers. Measure the parallel scalability
by plotting the elapsed time as a function of number of workers on a log-log scale.
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The figure shows typical performance for workers in the cloud (red plus data points). This strong
scaling test shows linear speedup and 100% parallel scalability up to 16 workers in the cloud.
Consider further scaling up of your calculation by increasing the number of workers in the cloud
or on a compute cluster. Note that the parallel scalability can be different, depending on your
hardware, for a larger number of workers and other applications.

9 If you have direct access to a cluster, you can scale up your calculation using workers on the
cluster. Check your access to clusters from the Parallel > Discover Clusters menu. If you have
an account, select cluster, open a parallel pool and run your application without changing your
code.

parpool(64);
a = MyCode(1000);
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The figure shows typical strong scaling performance for workers on a cluster (black x data
points). Observe that you achieve 100% parallel scalability, persisting up to at least 80 workers
on the cluster. Note that this application scales linearly - the speedup is equal to the number of
workers used.

This example shows a speedup equal to the number of workers. Not every task can achieve a
similar speedup, see for example “Interactively Run a Loop in Parallel Using parfor” on page 1-7.

You might need different approaches for your particular tasks. To learn more about alternative
approaches, see “Choose a Parallel Computing Solution” on page 1-16.

Tip You can further profile a parfor-loop by measuring how much data is transferred to and from
the workers in the parallel pool by using ticBytes and tocBytes. For more information and
examples, see “Profiling parfor-loops” on page 2-53.

See Also

Related Examples
• “Discover Clusters” on page 5-12
• “Discover Clusters and Use Cluster Profiles” on page 5-11
• “Profiling parfor-loops” on page 2-53
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• “Interactively Run a Loop in Parallel Using parfor” on page 1-7
• “Choose a Parallel Computing Solution” on page 1-16
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Use parfor-Loops for Reduction Assignments
These two examples show parfor-loops using reduction assignments. A reduction is an accumulation
across iterations of a loop. The example on the left uses x to accumulate a sum across 10 iterations of
the loop. The example on the right generates a concatenated array, 1:10. In both of these examples,
the execution order of the iterations on the workers does not matter: while the workers calculate
individual results for each iteration, the client properly accumulates and assembles the final loop
result.

x = 0;
parfor i = 1:10
   x = x + i;
end
x

x =

    55

x2 = [];
n = 10;
parfor i = 1:n
   x2 = [x2, i];
end
x2

x2 =

     1     2     3     4     5     6     7     8     9    10

If the loop iterations operate in a nondeterministic sequence, you might expect the concatenation
sequence in the example on the right to be nonconsecutive. However, MATLAB recognizes the
concatenation operation and yields deterministic results.

The next example, which attempts to compute Fibonacci numbers, is not a valid parfor-loop because
the value of an element of f in one iteration depends on the values of other elements of f calculated
in other iterations.

f = zeros(1,50);
f(1) = 1;
f(2) = 2;
parfor n = 3:50
    f(n) = f(n-1) + f(n-2);
end

When you are finished with your loop examples, clear your workspace and delete your parallel pool of
workers:

clear
delete(gcp)

See Also

More About
• “Reduction Variables” on page 2-42
• “Ensure That parfor-Loop Iterations are Independent” on page 2-10
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Use Objects and Handles in parfor-Loops
In this section...
“Using Objects in parfor-Loops” on page 2-27
“Handle Classes” on page 2-27
“Sliced Variables Referencing Function Handles” on page 2-27

Using Objects in parfor-Loops
If you are passing objects into or out of a parfor-loop, the objects must properly facilitate being
saved and loaded. For more information, see “Save and Load Process for Objects” (MATLAB).

You cannot slice the fields of objects because of first-level indexing constraints. For details, see
“Sliced Variables” on page 2-37.

For example, in the code on the left, both lines in the loop generate a classification error because of
the indexing. In the code on the right, as a workaround for sliced output, you employ separate sliced
arrays in the loop. Then you assign the structure fields after the loop is complete.

Invalid Valid
parfor i = 1:4
    outputData.outArray1(i) = 1/i;
    outputData.outArray2(i) = i^2;
end 

parfor i = 1:4
    outArray1(i) = 1/i;
    outArray2(i) = i^2;
end
outputData = struct('outArray1',outArray1,'outArray2',outArray2); 

Handle Classes
You can send handle objects as inputs to the body of a parfor-loop. However, any changes made to
handle objects on the workers during loop iterations are not automatically propagated back to the
client. That is, changes made inside the loop are not automatically reflected after the loop.

To get the changes back to the client after the loop, explicitly assign the modified handle objects to
output variables of the parfor-loop. In the following example, maps is a sliced input/output variable.

maps = {containers.Map(),containers.Map(),containers.Map()}; 
parfor ii = 1:numel(maps)
    mymap = maps{ii};   % input slice assigned to local copy
    for jj = 1:1000
        mymap(num2str(jj)) = rand;
    end
    maps{ii} = mymap;   % modified local copy assigned to output slice
end 

Sliced Variables Referencing Function Handles
You cannot directly call a function handle with the loop index as an input argument, because this
variable cannot be distinguished from a sliced input variable. If you must call a function handle with
the loop index variable as an argument, use feval.

The following example uses a function handle and a for-loop.
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B = @sin;
for ii = 1:100
    A(ii) = B(ii);
end

A corresponding parfor-loop does not allow B to reference a function handle. You can work around
the problem using feval.

B = @sin;
parfor ii = 1:100
    A(ii) = feval(B,ii);
end

See Also

More About
• “Troubleshoot Variables in parfor-Loops” on page 2-29
• “Sliced Variables” on page 2-37
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Troubleshoot Variables in parfor-Loops

In this section...
“Ensure That parfor-Loop Variables Are Consecutive Increasing Integers” on page 2-29
“Avoid Overflows in parfor-Loops” on page 2-29
“Solve Variable Classification Issues in parfor-Loops” on page 2-30
“Structure Arrays in parfor-Loops” on page 2-31
“Converting the Body of a parfor-Loop into a Function” on page 2-32
“Unambiguous Variable Names” on page 2-33
“Transparent parfor-loops” on page 2-33
“Global and Persistent Variables” on page 2-33

Ensure That parfor-Loop Variables Are Consecutive Increasing
Integers
Loop variables in a parfor-loop must be consecutive increasing integers. For this reason, the
following examples return errors:

parfor i = 0:0.2:1      % not integers
parfor j = 1:2:11       % not consecutive
parfor k = 12:-1:1      % not increasing

You can fix these errors by converting the loop variables into a valid range. For example, you can fix
the noninteger example as follows:

iValues = 0:0.2:1;
parfor idx = 1:numel(iValues)
i = iValues(idx);
...
end

Avoid Overflows in parfor-Loops
If MATLAB detects that the parfor-loop variable can overflow, it reports an error.

Overflow condition Example Solution
The length of the parfor-loop
range exceeds the maximum
value of the loop variable type.

Here, MATLAB reports an error
because
length(-128:127)>maxint(
'int8'):

parfor idx=int8(-128:127)
    idx;
end

Use a larger data type for the
parfor-loop variable. If you
want to keep the original data
type in your calculations,
convert the parfor-loop
variable inside the parfor loop.

parfor idx=-128:127
    int8(idx);
end

 Troubleshoot Variables in parfor-Loops

2-29



Overflow condition Example Solution
The initial value of the parfor-
loop range equals the minimum
value of the loop variable type.

Here, MATLAB reports an error
because
0=intmin('uint32'):

parfor idx=uint32(0:1)
    idx;
end

• Use a larger data type with a
lower minimum value, as in
the previous solution.

• Increment the range of
values. For example:

parfor idx=uint32(0:1)+1
    idx-1;
end

Solve Variable Classification Issues in parfor-Loops
When MATLAB recognizes a name in a parfor-loop as a variable, the variable is classified in one of
several categories, shown in the following table. Make sure that your variables are uniquely classified
and meet the category requirements. parfor-loops that violate the requirement return an error.

Classification Description
“Loop Variables” on
page 2-35

Loop indices

“Sliced Variables” on
page 2-37

Arrays whose segments are operated on by different iterations of the loop

“Broadcast
Variables” on page 2-
41

Variables defined before the loop whose value is required inside the loop, but
never assigned inside the loop

“Reduction
Variables” on page 2-
42

Variables that accumulates a value across iterations of the loop, regardless of
iteration order

“Temporary
Variables” on page 2-
48

Variables created inside the loop, and not accessed outside the loop

To find out which variables you have, examine the code fragment. All variable classifications in the
table are represented in this code:
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If you run into variable classification problems, consider these approaches before you resort to the
more difficult method of converting the body of a parfor-loop into a function.

• If you use a nested for-loop to index into a sliced array, you cannot use that array elsewhere in
the parfor-loop. The code on the left does not work because A is sliced and indexed inside the
nested for-loop. The code on the right works because v is assigned to A outside the nested loop.
You can compute an entire row, and then perform a single assignment into the sliced output.

Invalid Valid
A = zeros(4, 10);
parfor i = 1:4
    for j = 1:10
        A(i, j) = i + j;
    end
    disp(A(i, 1))
end

A = zeros(4, 10);
parfor i = 1:4
    v = zeros(1, 10);
    for j = 1:10
        v(j) = i + j;
    end
    disp(v(1))
    A(i, :) = v;
end

• The code on the left does not work because the variable x in parfor cannot be classified. This
variable cannot be classified because there are multiple assignments to different parts of x.
Therefore parfor cannot determine whether there is a dependency between iterations of the
loop. The code on the right works because you completely overwrite the value of x. parfor can
now determine unambiguously that x is a temporary variable.

Invalid Valid
parfor idx = 1:10
  x(1) = 7;
  x(2) = 8;
  out(idx) = sum(x);
end

parfor idx = 1:10
  x = [7, 8];
  out(idx) = sum(x);
end

• This example shows how to slice the field of a structured array. See struct for details. The code
on the left does not work because the variable a in parfor cannot be classified. This variable
cannot be classified because the form of indexing is not valid for a sliced variable. The first level of
indexing is not the sliced indexing operation, even though the field x of a appears to be sliced
correctly. The code on the right works because you extract the field of the struct into a separate
variable tmpx. parfor can now determine correctly that this variable is sliced. In general, you
cannot use fields of structs or properties of objects as sliced input or output variables in
parfor.

Invalid Valid
a.x = [];
parfor idx = 1:10
  a.x(idx) = 7;
end

tmpx = [];
parfor idx = 1:10
  tmpx(idx) = 7;
end
a.x = tmpx;

Structure Arrays in parfor-Loops
Creating Structures as Temporaries

You cannot create a structure in a parfor-loop using dot notation assignment. In the code on the left,
both lines inside the loop generate a classification error. In the code on the right, as a workaround
you can use the struct function to create the structure in the loop or in the first field.
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Invalid Valid
parfor i = 1:4
   temp.myfield1 = rand();
   temp.myfield2 = i;
end 

parfor i = 1:4
    temp = struct();
    temp.myfield1 = rand();
    temp.myfield2 = i;
end

parfor i = 1:4
    temp = struct('myfield1',rand(),'myfield2',i);
end

Slicing Structure Fields

You cannot use structure fields as sliced input or output arrays in a parfor-loop. In other words, you
cannot use the loop variable to index the elements of a structure field. In the code on the left, both
lines in the loop generate a classification error because of the indexing. In the code on the right, as a
workaround for sliced output, you employ separate sliced arrays in the loop. Then you assign the
structure fields after the loop is complete.

Invalid Valid
parfor i = 1:4
    outputData.outArray1(i) = 1/i;
    outputData.outArray2(i) = i^2;
end 

parfor i = 1:4
    outArray1(i) = 1/i;
    outArray2(i) = i^2;
end
outputData = struct('outArray1',outArray1,'outArray2',outArray2); 

The workaround for sliced input is to assign the structure field to a separate array before the loop.
You can use that new array for the sliced input.

inArray1 = inputData.inArray1;
inArray2 = inputData.inArray2;
parfor i = 1:4
    temp1 = inArray1(i);
    temp2 = inArray2(i);
end

Converting the Body of a parfor-Loop into a Function
If all else fails, you can usually solve variable classification problems in parfor-loops by converting
the body of the parfor-loop into a function. In the code on the left, Code Analyzer flags a problem
with variable y, but cannot resolve it. In the code on the right, you solve this problem by converting
the body of the parfor-loop into a function.
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Invalid Valid
function parfor_loop_body_bad

data = rand(5,5);
means = zeros(1,5);
parfor i = 1:5
  % Code Analyzer flags problem 
  % with variable y below  
    y.mean = mean(data(:,i));
    means(i) = y.mean;
end
disp(means);

function parfor_loop_body_good

data = rand(5,5);
means = zeros(1,5);
parfor i = 1:5
    % Call a function instead
    means(i) = computeMeans(data(:,i));
end
disp(means);

% This function now contains the body
% of the parfor-loop
function means = computeMeans(data)
y.mean = mean(data);
means = y.mean;

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
    0.6786    0.5691    0.6742    0.6462    0.6307

Unambiguous Variable Names
If you use a name that MATLAB cannot unambiguously distinguish as a variable inside a parfor-loop,
at parse time MATLAB assumes you are referencing a function. Then at run-time, if the function
cannot be found, MATLAB generates an error. See “Variable Names” (MATLAB). For example, in the
following code f(5) could refer either to the fifth element of an array named f, or to a function
named f with an argument of 5. If f is not clearly defined as a variable in the code, MATLAB looks for
the function f on the path when the code runs.

parfor i = 1:n
   ...
   a = f(5);
   ...
end

Transparent parfor-loops
The body of a parfor-loop must be transparent: all references to variables must be “visible” in the
text of the code. For more details about transparency, see “Ensure Transparency in parfor-Loops or
spmd Statements” on page 2-50.

Global and Persistent Variables
The body of a parfor-loop cannot contain global or persistent variable declarations.

See Also

More About
• “Decide When to Use parfor” on page 2-2
• “Convert for-Loops Into parfor-Loops” on page 2-7
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• “Ensure That parfor-Loop Iterations are Independent” on page 2-10
• “Nested parfor and for-Loops and Other parfor Requirements” on page 2-13
• “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-50
• “Use parfor-Loops for Reduction Assignments” on page 2-26
• “Run Parallel Simulations” (Simulink)
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Loop Variables
The loop variable defines the loop index value for each iteration. You set it in the first line of a
parfor statement.

parfor p=1:12

For values across all iterations, the loop variable must evaluate to ascending consecutive integers.
Each iteration is independent of all others, and each has its own loop index value.

Required (static): Assignments to the loop variable are not allowed.

This restriction is required, because changing p in the parfor body cannot guarantee the
independence of iterations.

This example attempts to modify the value of the loop variable p in the body of the loop, and thus is
invalid.

parfor p = 1:n
   p = p + 1;
   a(p) = i;
end

Required (static): You cannot index or subscript the loop variable in any way.

This restriction is required, because referencing a field of a loop variable cannot guarantee the
independence of iterations.

The following code attempts to reference a field (b) of the loop variable (p) as if it were a structure.
Both lines within the loop are invalid.

parfor p = 1:n
    p.b = 3
    x(p) = fun(p.b)
end

Similarly, the following code is invalid because it attempts to index the loop variable as a 1-by-1
matrix:

parfor p = 1:n
    x = p(1)
end

Required (static): You cannot use a range increment in for-loops nested inside a parfor-loop.

Consider the following example:

N = 10; 
T = 3; 
A = zeros(N,T); 
B = zeros(N,T); 

The following code is invalid.

parfor i = 1:1:N 
    for t = 1:1:T 

 Loop Variables

2-35



        A(i,t) = t; 
    end 
end 

The following code is valid.

parfor i = 1:1:N 
    for t = 1:T 
        B(i,t) = t; 
    end 
end 

See Also
parfor

More About
• “Troubleshoot Variables in parfor-Loops” on page 2-29
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Sliced Variables
A sliced variable is one whose value can be broken up into segments, or slices, which are then
operated on separately by different workers. Each iteration of the loop works on a different slice of
the array. Using sliced variables can reduce communication between the client and workers.

In this example, the workers apply f to the elements of A separately.

parfor i = 1:length(A)
   B(i) = f(A(i));
end

Characteristics of a Sliced Variable
If a variable in a parfor-loop has all the following characteristics, then the variable is sliced:

• Type of First-Level Indexing — The first level of indexing is either parentheses, (), or braces, {}.
• Fixed Index Listing — Within the first-level parentheses or braces, the list of indices is the same

for all occurrences of a given variable.
• Form of Indexing — Within the list of indices for the variable, exactly one index involves the loop

variable.
• Shape of Array — The array maintains a constant shape. In assigning to a sliced variable, the right

side of the assignment cannot be [] or '', because these operators attempt to delete elements.

Type of First-Level Indexing. For a sliced variable, the first level of indexing is enclosed in either
parentheses, (), or braces, {}.

Here are the forms for the first level of indexing for arrays that are sliced and not sliced.

Not Sliced Sliced
A.x A(...)
A.(...) A{...}

After the first level, you can use any type of valid MATLAB indexing in the second and subsequent
levels.

The variable A shown here on the left is not sliced; that shown on the right is sliced.

A.q{i,12}                         A{i,12}.q

Fixed Index Listing. Within the first-level indexing of a sliced variable, the list of indices is the same
for all occurrences of a given variable.

The variable A on the left is not sliced because A is indexed by i and i+1 in different places. In the
code on the right, variable A is sliced correctly.

Not sliced Sliced
parfor i = 1:k
   B(:) = h(A(i), A(i+1));
end

parfor i = 1:k
   B(:) = f(A(i));
   C(:) = g(A{i});
end
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The example on the right shows occurrences of first-level indexing using both parentheses and braces
in the same loop, which is acceptable.

The following example on the left does not slice A because the indexing of A is not the same in all
places. The example on the right slices both A and B. The indexing of A is not the same as the
indexing of B. However, the indexing of both A and B are individually consistent.

Not sliced Sliced
parfor i=1:10
  b = A(1,i) + A(2,i)
end

A = [ 1  2  3  4  5  6  7  8  9  10; 
     10 20 30 40 50 60 70 80 90 100];
B = zeros(1,10);
parfor i=1:10
    for n=1:2
       B(i) = B(i)+A(n,i)
    end
end

Form of Indexing. Within the first-level of indexing for a sliced variable, exactly one indexing
expression is of the form i, i+k, i-k, or k+i. The index i is the loop variable and k is a scalar
integer constant or a simple (non-indexed) broadcast variable. Every other indexing expression is a
positive integer constant, a simple (non-indexed) broadcast variable, a nested for-loop index
variable, colon, or end.

With i as the loop variable, the A variables shown on the left are not sliced, while the A variables on
the right are sliced.

Not sliced Sliced
A(i+f(k),j,:,3) % f(k) invalid for slicing
A(i,20:30,end)  % 20:30 not scalar
A(i,:,s.field1) % s.field1 not simple broadcast var

A(i+k,j,:,3)
A(i,:,end)
A(i,:,k)

When you use other variables along with the loop variable to index an array, you cannot set these
variables inside the loop. In effect, such variables are constant over the execution of the entire
parfor statement. You cannot combine the loop variable with itself to form an index expression.

Shape of Array. A sliced variable must maintain a constant shape. The variable A shown here is not
sliced:

A(i,:) = [];

A is not sliced because changing the shape of a sliced array would violate assumptions governing
communication between the client and workers.

Sliced Input and Output Variables
A sliced variable can be an input variable, an output variable, or both. MATLAB transmits sliced input
variables from the client to the workers, and sliced output variables from workers back to the client.
If a variable is both input and output, it is transmitted in both directions.

In this parfor-loop, A is a sliced input variable and B is a sliced output variable.

A = rand(1,10);
parfor ii = 1:10
   B(ii) = A(ii);
end
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However, if MATLAB determines that, in each iteration, the sliced variable elements are set before
any use, then MATLAB does not transmit the variable to the workers. In this example, all elements of
A are set before any use.

parfor ii = 1:n
   if someCondition
      A(ii) = 32;
   else
      A(ii) = 17;
   end
   loop code that uses A(ii)
end

Sliced-output variables can grow dynamically through indexed assignments with default values
inserted at intermediate indices. In this example, you can see that the default value of 0 has been
inserted at several places in A.

A = [];
parfor idx = 1:10
    if rand < 0.5
        A(idx) = idx;
    end
end

disp(A);

     0     2     0     4     5     0     0     8     9    10

Even if a sliced variable is not explicitly referenced as an input, implicit usage can make it so. In the
following example, not all elements of A are necessarily set inside the parfor-loop. Therefore the
original values of the array are received, held, and then returned from the loop.

A = 1:10;
parfor ii = 1:10
    if rand < 0.5
        A(ii) = 0;
    end
end

Under some circumstances, parfor-loops must assume that a worker may need all segments of a
sliced variable. In this example, it is not possible to determine which elements of the sliced variable
will be read before execution, so parfor sends all possible segments.

A = 1:10;
parfor ii=1:11
    if ii <= randi([10 11])
        A(ii) = A(ii) + 1;
    end
end

Note that in these circumstances, the code can attempt to index a sliced variable outside of the array
bounds and generate an error.

Nested for-Loops with Sliced Variables
When you index a sliced variable with a nested for-loop variable, keep these requirements in mind:
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• The sliced variable must be enclosed within the corresponding for-loop.

In this example, the code on the left does not work because it indexes the sliced variable A outside
the nested for-loop that defines j.

Not Sliced Sliced
A = zeros(10);
parfor i=1:10
    for j=1:10
    end
    A(i,j)=1;
end 

A = zeros(10);
parfor i=1:10
    for j=1:10
        A(i,j) = 1;
    end
end

• The range of the for-loop variable must be a row vector of positive constant numbers or
variables.

In this example, the code on the left does not work because it defines the upper limit of the nested
for-loop with a function call. The code on the right provides a workaround by defining the upper
limit in a constant variable outside the parfor-loop.

Not Sliced Sliced
A = zeros(10);

parfor i=1:10
   for j=1:size(A,2)
      A(i,j)=1;
   end
end

A = zeros(10);
L = size(A,2);
parfor=1:10
    for j=1:L
        A(i,j)=1;
    end
end

• The for-loop variable must not be assigned other than by its for statement.

In this example, the code on the left does not work because it reassigns the for-loop variable
inside the for-loop. The code on the right provides a workaround by assigning i to the temporary
variable t.

Not Sliced Sliced

A = zeros(10);                          
parfor i=1:10
   for j=1:10
       if i == j
          j = i;
          A(i,j) = j;
       end
   end
end 

A = zeros(10);
parfor i=1:10
    for j=1:10
        if i == j
            t = i;
            A(i,j) = t;
        end
    end
end

See Also

More About
• “Troubleshoot Variables in parfor-Loops” on page 2-29
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Broadcast Variables
A broadcast variable is any variable, other than the loop variable or a sliced variable, that does not
change inside the loop. At the start of a parfor-loop, the values of any broadcast variables are sent
to all workers. This type of variable can be useful or even essential for particular tasks. However,
large broadcast variables can cause significant communication between client and workers and
increase parallel overhead. Sometimes it is more efficient to use temporary variables for this purpose,
creating and assigning them inside the loop.

For more details, see “Temporary Variables” on page 2-48 and “Deciding When to Use parfor” on
page 2-2.

See Also

More About
• “Troubleshoot Variables in parfor-Loops” on page 2-29
• “Deciding When to Use parfor” on page 2-2
• “Temporary Variables” on page 2-48
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Reduction Variables
MATLAB supports an important exception, called reduction, to the rule that loop iterations must be
independent. A reduction variable accumulates a value that depends on all the iterations together,
but is independent of the iteration order. MATLAB allows reduction variables in parfor-loops.

Reduction variables appear on both sides of an assignment statement, such as any of the following,
where expr is a MATLAB expression.

X = X + expr X = expr + X
X = X - expr See Associativity in Reduction Assignments in

“Requirements for Reduction Assignments” on page
2-44

X = X .* expr X = expr .* X
X = X * expr X = expr * X
X = X & expr X = expr & X
X = X | expr X = expr | X
X = [X, expr] X = [expr, X]
X = [X; expr] X = [expr; X]
X = min(X, expr) X = min(expr, X)
X = max(X, expr) X = max(expr, X)
X = union(X, expr) X = union(expr, X)
X = intersect(X, expr) X = intersect(expr, X)

Each of the allowed statements listed in this table is referred to as a reduction assignment. By
definition, a reduction variable can appear only in assignments of this type.

The general form of a reduction assignment is

X = f(X, expr) X = f(expr, X)

The following example shows a typical usage of a reduction variable X.

X = 0;            % Do some initialization of X
parfor i = 1:n
    X = X + d(i);
end

This loop is equivalent to the following, where you calculate each d(i) by a different iteration.

X = X + d(1) + ... + d(n)

In a regular for-loop, the variable X would get its value either before entering the loop or from the
previous iteration of the loop. However, this concept does not apply to parfor-loops.

In a parfor-loop, the value of X is never transmitted from client to workers or from worker to
worker. Rather, additions of d(i) are done in each worker, with i ranging over the subset of 1:n
being performed on that worker. The results are then transmitted back to the client, which adds the
partial sums of the workers into X. Thus, workers do some of the additions, and the client does the
rest.
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Notes About Required and Recommended Guidelines
If your parfor code does not adhere to the guidelines and restrictions labeled as Required, you get
an error. MATLAB catches some of these errors at the time it reads the code, and others when it
executes the code. These errors are labeled as Required (static) or Required (dynamic)
respectively. Guidelines that do not cause errors are labeled as Recommended. You can use MATLAB
Code Analyzer to help parfor-loops comply with the guidelines.

Basic Rules for Reduction Variables
The following requirements further define the reduction assignments associated with a given
variable.

Required (static): For any reduction variable, the same reduction function or operation must be
used in all reduction assignments for that variable.

The parfor-loop on the left is not valid because the reduction assignment uses + in one instance, and
[,] in another. The parfor-loop on the right is valid.

Invalid Valid
parfor i = 1:n
   if testLevel(k)
      A = A + i;
   else
      A = [A, 4+i];
   end
   % loop body continued
end

parfor i = 1:n
   if testLevel(k)
      A = A + i;
   else
      A = A + i + 5*k;
   end
   % loop body continued
end

Required (static): If the reduction assignment uses *, [,], or [;], then X must be consistently
specified as the first or second argument in every reduction assignment.

The parfor-loop on the left is not valid because the order of items in the concatenation is not
consistent throughout the loop. The parfor-loop on the right is valid.

Invalid Valid
parfor i = 1:n
   if testLevel(k)
      A = [A, 4+i];
   else
      A = [r(i), A];
   end
   % loop body continued
end

parfor i = 1:n
   if testLevel(k)
      A = [A, 4+i];
   else
      A = [A, r(i)];
   end
   % loop body continued
end

Required (static): You cannot index or subscript a reduction variable.

The code on the left is not valid because it tries to index a, and so MATLAB cannot classify it as a
reduction variable. To fix it, the code on the right uses a non-indexed variable.
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Invalid Valid
a.x = 0
parfor i = 1:10
   a.x = a.x + 1;
end 

tmpx = 0
parfor i = 1:10
   tmpx = tmpx + 1;
end
a.x = tmpx;

Requirements for Reduction Assignments
Reduction Assignments. In addition to the specific forms of reduction assignment listed in the table in
“Reduction Variables” on page 2-42, the only other (and more general) form of a reduction
assignment is

X = f(X, expr) X = f(expr, X)

Required (static): f can be a function or a variable. If f is a variable, then you cannot change f in
the parfor body (in other words, it is a broadcast variable).

If f is a variable, then for all practical purposes its value at run time is a function handle. However, as
long as the right side can be evaluated, the resulting value is stored in X.

The parfor-loop on the left does not execute correctly because the statement f = @times causes f
to be classified as a temporary variable. Therefore f is cleared at the beginning of each iteration. The
parfor-loop on the right is correct, because it does not assign f inside the loop.

Invalid Valid
f = @(x,k)x * k;
parfor i = 1:n
   a = f(a,i);
   % loop body continued
   f = @times;  % Affects f
end

f = @(x,k)x * k;
parfor i = 1:n
   a = f(a,i);
   % loop body continued
end

The operators && and || are not listed in the table in “Reduction Variables” on page 2-42. Except for
&& and ||, all the matrix operations of MATLAB have a corresponding function f, such that u op v
is equivalent to f(u,v). For && and ||, such a function cannot be written because u&&v and u||v
might or might not evaluate v. However, f(u,v) always evaluates v before calling f. Therefore &&
and || are excluded from the table of allowed reduction assignments for a parfor-loop.

Every reduction assignment has an associated function f. The properties of f that ensure
deterministic behavior of a parfor statement are discussed in the following sections.

Associativity in Reduction Assignments. The following practice is recommended for the function f, as
used in the definition of a reduction variable. However, this rule does not generate an error if not
adhered to. Therefore, it is up to you to ensure that your code meets this recommendation.

Recommended: To get deterministic behavior of parfor-loops, the reduction function f must be
associative.

To be associative, the function f must satisfy the following for all a, b, and c.

f(a,f(b,c)) = f(f(a,b),c)
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The classification rules for variables, including reduction variables, are purely syntactic. They cannot
determine whether the f you have supplied is truly associative or not. Associativity is assumed, but if
you violate this rule, each execution of the loop might result in different answers.

Note The addition of mathematical real numbers is associative. However, the addition of floating-
point numbers is only approximately associative. Different executions of this parfor statement might
produce values of X with different round-off errors. You cannot avoid this cost of parallelism.

For example, the statement on the left yields 1, while the statement on the right returns 1 + eps:

(1 + eps/2) + eps/2           1 + (eps/2 + eps/2)

Except for the minus operator (-), all special cases listed in the table in “Reduction Variables” on
page 2-42 have a corresponding (approximately) associative function. MATLAB calculates the
assignment X = X - expr by using X = X + (-expr). (So, technically, the function for calculating
this reduction assignment is plus, not minus.) However, the assignment X = expr - X cannot be
written using an associative function, which explains its exclusion from the table.

Commutativity in Reduction Assignments. Some associative functions, including +, .*, min, and max,
intersect, and union, are also commutative. That is, they satisfy the following for all a and b.

f(a,b) = f(b,a)

Noncommutative functions include * (because matrix multiplication is not commutative for matrices
in which both dimensions have size greater than one), [,], and [;]. Noncommutativity is the reason
that consistency in the order of arguments to these functions is required. As a practical matter, a
more efficient algorithm is possible when a function is commutative as well as associative, and
parfor is optimized to exploit commutativity.

Recommended: Except in the cases of *, [,], and [;], the function f of a reduction assignment
must be commutative. If f is not commutative, different executions of the loop might result in
different answers.

Violating the restriction on commutativity in a function used for reduction could result in unexpected
behavior, even if it does not generate an error.

Unless f is a known noncommutative built-in function, it is assumed to be commutative. There is
currently no way to specify a user-defined, noncommutative function in parfor.

Recommended: An overload of +, *, .*, [,], or [;] must be associative if it is used in a reduction
assignment in a parfor-loop.

Recommended: An overload of +, .*, union, or intersect must be commutative.

Similarly, because of the special treatment of X = X - expr, the following is recommended.

Recommended: An overload of the minus operator (-) must obey the mathematical law that X -
(y + z) is equivalent to (X - y) - z.

Using a Custom Reduction Function
Suppose that each iteration of a loop performs some calculation, and you are interested in finding
which iteration of a loop produces the maximum value. This reduction exercise makes an
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accumulation across multiple iterations of a loop. Your reduction function must compare iteration
results, until the maximum value can be determined after all iterations are compared.

First consider the reduction function itself. To compare one iteration result against another, the
function requires as input the current result and the known maximum from other iterations so far.
Each of the two inputs is a vector containing iteration results and iteration number.

function mc = comparemax(A, B)
% Custom reduction function for 2-element vector input

if A(1) >= B(1) % Compare the two input data values
    mc = A;     % Return the vector with the larger result
else
    mc = B;
end

Inside the loop, each iteration calls the reduction function (comparemax), passing in a pair of two-
element vectors:

• The accumulated maximum and its iteration index, which is the reduction variable cummax
• The iteration value and index

If the data value of the current iteration is greater than the maximum in cummmax, the function
returns a vector of the new value and its iteration number. Otherwise, the function returns the
existing maximum and its iteration number.

Each iteration calls the reduction function comparemax to compare its own data [dat i] to data
already accumulated in cummax. Try the following code for this loop.

% First element of cummax is maximum data value
% Second element of cummax is where (iteration) maximum occurs
cummax = [0 0];  % Initialize reduction variable
parfor ii = 1:100
    dat = rand(); % Simulate some actual computation
    cummax = comparemax(cummax, [dat ii]);
end
disp(cummax);

Chaining Reduction Operators
MATLAB classifies assignments of the form X = expr op X or X = X op expr as reduction
statements when they are equivalent to the parenthesized assignments X = (expr) op X or X = X
op (expr) respectively. X is a variable, op is a reduction operator, and expr is an expression with
one or more binary reduction operators. Consequently, due to the MATLAB operator precedence
rules, MATLAB might not classify some assignments of the form X = expr op1 X op2 expr2 ...,
that chain operators, as reduction statements in parfor-loops.

In this example, MATLAB classifies X as a reduction variable because the assignment is equivalent to
X = X + (1 * 2).

X = 0;
parfor i=1:10
   X = X + 1 * 2;
end
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In this example, MATLAB classifies X as a temporary variable because the assignment, equivalent to X
= (X * 1) + 2, is not of the form X = (expr) op X or X = X op (expr).

X = 0;
parfor i=1:10
   X = X * 1 + 2;
end

As a best practice, use parentheses to explicitly specify operator precedence for chained reduction
assignments.

See Also

More About
• “Troubleshoot Variables in parfor-Loops” on page 2-29
• “Use parfor-Loops for Reduction Assignments” on page 2-26
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Temporary Variables
A temporary variable is any variable that is the target of a direct, nonindexed assignment, but is not a
reduction variable. In the following parfor-loop, a and d are temporary variables:

a = 0;
z = 0;
r = rand(1,10);
parfor i = 1:10
   a = i;          % Variable a is temporary
   z = z + i;
   if i <= 5
      d = 2*a;     % Variable d is temporary
   end
end

In contrast to the behavior of a for-loop, MATLAB clears any temporary variables before each
iteration of a parfor-loop. To help ensure the independence of iterations, the values of temporary
variables cannot be passed from one iteration of the loop to another. Therefore, temporary variables
must be set inside the body of a parfor-loop, so that their values are defined separately for each
iteration.

MATLAB does not send temporary variables back to the client. A temporary variable in a parfor-loop
has no effect on a variable with the same name that exists outside the loop. This behavior is different
from ordinary for-loops.

Uninitialized Temporaries
Temporary variables in a parfor-loop are cleared at the beginning of every iteration. MATLAB can
sometimes detect cases in which loop iterations use a temporary variable before it is set in that
iteration. In this case, MATLAB issues a static error rather than a run-time error. There is little point
in allowing execution to proceed if a run-time error is guaranteed to occur. This kind of error often
arises because of confusion between for and parfor, especially regarding the rules of classification
of variables. For example:

  b = true;
  parfor i = 1:n
     if b && some_condition(i)
        do_something(i);
        b = false;
     end
     ...
  end

This loop is acceptable as an ordinary for-loop. However, as a parfor-loop, b is a temporary variable
because it occurs directly as the target of an assignment inside the loop. Therefore it is cleared at the
start of each iteration, so its use in the condition of the if is guaranteed to be uninitialized. If you
change parfor to for, the value of b assumes sequential execution of the loop. In that case,
do_something(i) is executed only for the lower values of i until b is set false.
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Temporary Variables Intended as Reduction Variables
Another common cause of uninitialized temporaries can arise when you have a variable that you
intended to be a reduction variable. However, if you use it elsewhere in the loop, then it is classified
as a temporary variable. For example:

s = 0;
parfor i = 1:n
   s = s + f(i);
   ...
   if (s > whatever)
      ...
   end
end

If the only occurrences of s are the two in the first statement of the body, s would be classified as a
reduction variable. But in this example, s is not a reduction variable because it has a use outside of
reduction assignments in the line s > whatever. Because s is the target of an assignment (in the
first statement), it is a temporary. Therefore MATLAB issues an error, but points out the possible
connection with reduction.

If you change parfor to for, the use of s outside the reduction assignment relies on the iterations
being performed in a particular order. In a parfor-loop, it matters that the loop “does not care”
about the value of a reduction variable as it goes along. It is only after the loop that the reduction
value becomes usable.

ans Variable
Inside the body of a parfor-loop, the ans variable is classified as a temporary variable. All
considerations and restrictions for temporary variables apply to ans. For example, assignments to
ans inside a parfor-loop have no effect on ans outside the loop.

See Also

More About
• “Troubleshoot Variables in parfor-Loops” on page 2-29
• “Reduction Variables” on page 2-42
• “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-50
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Ensure Transparency in parfor-Loops or spmd Statements
The body of a parfor-loop or spmd block must be transparent. Transparency means that all
references to variables must be visible in the text of the code.

In the following examples, the variable X is not transferred to the workers. Only the character vector
'X' is passed to eval, and X is not visible as an input variable in the loop or block body. As a result,
MATLAB issues an error at run time.

X = 5;
parfor ii = 1:4
    eval('X');
end

X = 5;
spmd
    eval('X');
end

Similarly, you cannot clear variables from a workspace by executing clear inside a parfor or spmd
statement:

parfor ii = 1:4
    <statements...>
    clear('X')  % cannot clear: transparency violation
    <statements...>
end

spmd; clear('X'); end

Alternatively, you can free up memory used by a variable by setting its value to empty when it is no
longer needed.

parfor ii = 1:4
    <statements...>
    X = [];
    <statements...>
end

In the case of spmd blocks, you can clear its Composite from the client workspace.

In general, the requirement for transparency restricts all dynamic access to variables, because the
entire variable might not be present in any given worker. In a transparent workspace, you cannot
create, delete, modify, access, or query variables if you do not explicitly specify these variables in the
code.

Examples of other actions or functions that violate transparency in a parfor-loop include:

• who and whos
• evalc, evalin, and assignin with the workspace argument specified as 'caller'
• save and load, unless the output of load is assigned to a variable
• If a script attempts to read or write variables of the parent workspace, then running this script

can cause a transparency violation. To avoid this issue, convert the script to a function, and call it
with the necessary variables as input or output arguments.

Note Transparency applies only to the direct body of the parfor or spmd construct, and not to any
functions called from there. The workaround for save and load is to hide the calls to save and load
inside a function.
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MATLAB does successfully execute eval and evalc statements that appear in functions called from
the parfor body.

Parallel Simulink Simulations
You can run Simulink models in parallel with the parsim command instead of using parfor-loops.
For more information and examples of using Simulink in parallel, see “Run Multiple Simulations”
(Simulink).

• If your Simulink model requires access to variables contained in a .mat file, you must load these
parameters in the workspace of each worker. You must do this before the parfor-loop, and after
opening parpool. To achieve this, you can use spmd or parfevalOnAll, as shown in the
examples.

spmd 
    evalin('base', 'load(''path/to/file'')') 
end

parfevalOnAll(@evalin, 0, 'base', 'load(''path/to/file'')')
• If your model also requires variables defined in the body of your MATLAB script, you must use

assignin or evalin to move these variables to the base workspace of each worker, in every
parfor iteration.

See Also
parfor | spmd

More About
• “Troubleshoot Variables in parfor-Loops” on page 2-29
• “Run Single Programs on Multiple Data Sets” on page 3-2
• “Run Parallel Simulations” (Simulink)

 Ensure Transparency in parfor-Loops or spmd Statements

2-51



Improve parfor Performance
You can improve the performance of parfor-loops in various ways. This includes parallel creation of
arrays inside the loop; profiling parfor-loops; slicing arrays; and optimizing your code on local
workers before running on a cluster.

Where to Create Arrays

When you create a large array in the client before your parfor-loop, and access it within the loop,
you might observe slow execution of your code. To improve performance, tell each MATLAB worker to
create its own arrays, or portions of them, in parallel. You can save the time of transferring data from
client to workers by asking each worker to create its own copy of these arrays, in parallel, inside the
loop. Consider changing your usual practice of initializing variables before a for-loop, avoiding
needless repetition inside the loop. You might find that parallel creation of arrays inside the loop
improves performance.

Performance improvement depends on different factors, including

• size of the arrays
• time needed to create arrays
• worker access to all or part of the arrays
• number of loop iterations that each worker performs

Consider all factors in this list when you are considering to convert for-loops to parfor-loops. For
more details, see “Convert for-Loops Into parfor-Loops” on page 2-7.

As an alternative, consider the parallel.pool.Constant function to establish variables on the
pool workers before the loop. These variables remain on the workers after the loop finishes, and
remain available for multiple parfor-loops. You might improve performance using
parallel.pool.Constant, because the data is transferred only once to the workers.

In this example, you first create a big data set D and execute a parfor-loop accessing D. Then you
use D to build a parallel.pool.Constant object, which allows you to reuse the data by copying D
to each worker. Measure the elapsed time using tic and toc for each case and note the difference.

function constantDemo

D = rand(1e7, 1);
tic
for i = 1:20
    a = 0;
    parfor j = 1:60
        a = a + sum(D);
    end
end
toc

tic
D = parallel.pool.Constant(D);
for i = 1:20
    b = 0;
    parfor j = 1:60
        b = b + sum(D.Value);
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    end
end
toc

>> constantDemo
Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
Elapsed time is 63.839702 seconds.
Elapsed time is 10.194815 seconds.

In the second case, you send the data only once. You can enhance the performance of the parfor-
loop by using the parallel.pool.Constant object.

Profiling parfor-loops
You can profile a parfor-loop by measuring the time elapsed using tic and toc. You can also
measure how much data is transferred to and from the workers in the parallel pool by using
ticBytes and tocBytes. Note that this is different from profiling MATLAB code in the usual sense
using the MATLAB profiler, see “Profile Your Code to Improve Performance” (MATLAB).

This example calculates the spectral radius of a matrix and converts a for-loop into a parfor-loop.
Measure the resulting speedup and the amount of transferred data.

1 In the MATLAB Editor, enter the following for-loop. Add tic and toc to measure the time
elapsed. Save the file as MyForLoop.m.

function a = MyForLoop(A)

tic
for i = 1:200
    a(i) = max(abs(eig(rand(A))));
end
toc

2 Run the code, and note the elapsed time.

a = MyForLoop(500);

Elapsed time is 31.935373 seconds.
3 In MyForLoop.m, replace the for-loop with a parfor-loop. Add ticBytes and tocBytes to

measure how much data is transferred to and from the workers in the parallel pool. Save the file
as MyParforLoop.m.

ticBytes(gcp);
parfor i = 1:200
    a(i) = max(abs(eig(rand(A))));
end
tocBytes(gcp)

4 Run the new code, and run it again. Note that the first run is slower than the second run,
because the parallel pool has to be started and you have to make the code available to the
workers. Note the elapsed time for the second run.

By default, MATLAB automatically opens a parallel pool of workers on your local machine.

a = MyParforLoop(500);

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
...
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             BytesSentToWorkers    BytesReceivedFromWorkers
             __________________    ________________________

    1        15340                  7024                   
    2        13328                  5712                   
    3        13328                  5704                   
    4        13328                  5728                   
    Total    55324                 24168                   

Elapsed time is 10.760068 seconds. 

The elapsed time is 31.9 seconds in serial and 10.8 seconds in parallel, and shows that this code
benefits from converting to a parfor-loop.

Slicing Arrays
If a variable is initialized before a parfor-loop, then used inside the parfor-loop, it has to be passed
to each MATLAB worker evaluating the loop iterations. Only those variables used inside the loop are
passed from the client workspace. However, if all occurrences of the variable are indexed by the loop
variable, each worker receives only the part of the array it needs.

As an example, you first run a parfor-loop using a sliced variable and measure the elapsed time.

% Sliced version

M = 100;
N = 1e6;
data = rand(M, N);

tic
parfor idx = 1:M
    out2(idx) = sum(data(idx, :)) ./ N;
end
toc

Elapsed time is 2.261504 seconds.

Now suppose that you accidentally use a reference to the variable data instead of N inside the
parfor-loop. The problem here is that the call to size(data, 2) converts the sliced variable into a
broadcast (non-sliced) variable.

% Accidentally non-sliced version

clear

M = 100;
N = 1e6;
data = rand(M, N);

tic
parfor idx = 1:M
    out2(idx) = sum(data(idx, :)) ./ size(data, 2);
end
toc

Elapsed time is 8.369071 seconds.

Note that the elapsed time is greater for the accidentally broadcast variable.
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In this case, you can easily avoid the non-sliced usage of data, because the result is a constant, and
can be computed outside the loop. In general, you can perform computations that depend only on
broadcast data before the loop starts, since the broadcast data cannot be modified inside the loop. In
this case, the computation is trivial, and results in a scalar result, so you benefit from taking the
computation out of the loop.

Optimizing on Local vs. Cluster Workers
Running your code on local workers might offer the convenience of testing your application without
requiring the use of cluster resources. However, there are certain drawbacks or limitations with using
local workers. Because the transfer of data does not occur over the network, transfer behavior on
local workers might not be indicative of how it will typically occur over a network.

With local workers, because all the MATLAB worker sessions are running on the same machine, you
might not see any performance improvement from a parfor-loop regarding execution time. This can
depend on many factors, including how many processors and cores your machine has. The key point
here is that a cluster might have more cores available than your local machine. If your code can be
multithreaded by MATLAB, then the only way to go faster is to use more cores to work on the
problem, using a cluster.

You might experiment to see if it is faster to create the arrays before the loop (as shown on the left
below), rather than have each worker create its own arrays inside the loop (as shown on the right).

Try the following examples running a parallel pool locally, and notice the difference in time execution
for each loop. First open a local parallel pool:

parpool('local')

Run the following examples, and execute again. Note that the first run for each case is slower than
the second run, because the parallel pool has to be started and you have to make the code available
to the workers. Note the elapsed time, for each case, for the second run.

tic;
n = 200;
M = magic(n);
R = rand(n);
parfor i = 1:n
   A(i) = sum(M(i,:).*R(n+1-i,:));
end
toc

tic;
n = 200;
parfor i = 1:n
   M = magic(n);
   R = rand(n);
   A(i) = sum(M(i,:).*R(n+1-i,:));
end
toc

Running on a remote cluster, you might find different behavior, as workers can simultaneously create
their arrays, saving transfer time. Therefore, code that is optimized for local workers might not be
optimized for cluster workers, and vice versa.

See Also
parallel.pool.Constant

More About
• “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-50
• “Use parfor-Loops for Reduction Assignments” on page 2-26
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Run Code on Parallel Pools
In this section...
“What Is a Parallel Pool?” on page 2-56
“Automatically Start and Stop a Parallel Pool” on page 2-56
“Alternative Ways to Start and Stop Pools” on page 2-57
“Pool Size and Cluster Selection” on page 2-59

What Is a Parallel Pool?
A parallel pool is a set of MATLAB workers on a compute cluster or desktop. By default, a parallel
pool starts automatically when needed by parallel language features such as parfor. You can specify
the default pool size and cluster in your parallel preferences. The preferences panel displays your
pool size and cluster when you select Parallel Preferences in the Parallel menu. You can change
pool size and cluster in the Parallel menu. Alternatively, you can choose cluster and pool size using
parcluster and parpool respectively, on the MATLAB command line. See the image for more
detail.

The workers in a parallel pool can be used interactively and communicate with each other during the
lifetime of the job. You can view your parpool jobs in the “Job Monitor” on page 5-24. While these
pool workers are reserved for your interactive use, they are not available to other users. You can have
only one parallel pool at a time from a MATLAB client session. In MATLAB, the current parallel pool is
represented by a parallel.Pool object.

Automatically Start and Stop a Parallel Pool
By default, a parallel pool starts automatically when needed by certain parallel language features.
Many functions can automatically start a parallel pool, including:

• parfor
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• spmd
• distributed
• Composite
• parfeval
• parfevalOnAll
• gcp
• mapreduce
• mapreducer
• tall
• ticBytes and tocBytes

Your parallel preferences specify which cluster the pool runs on, and the preferred number of
workers in the pool. To access your preferences, on the Home tab, in the Environment section, click
Parallel > Parallel Preferences.

Alternative Ways to Start and Stop Pools
In your parallel preferences, you can turn off the option for the pool to open or close automatically. If
you choose not to have the pool open automatically, you can control the pool with the following
techniques.

Control the Parallel Pool from the MATLAB Desktop

You can use the parallel status indicator in the lower left corner of the MATLAB desktop to start a
parallel pool manually.

In MATLAB Online, the parallel status indicator is not visible by default. You must start a parallel pool
first by using parpool or any of the functions that automatically start a parallel pool.

Click the indicator icon, and select Start Parallel Pool. The pool size and cluster are specified by
your parallel preferences and default cluster. Your default cluster is indicated by a check mark on the
Parallel > Default Cluster menu.

The menu options are different when a pool is running. You can:

• View the number of workers and cluster name
• Change the time until automatic shut-down
• Shut down the parallel pool

 Run Code on Parallel Pools

2-57

https://www.mathworks.com/products/matlab-online.html


To stop a pool, you can also select Shut Down Parallel Pool.

Programming Interface

Start a Parallel Pool

You can start and stop a parallel pool programmatically by using default settings or specifying
alternatives.

To open a parallel pool based on your preference settings:

parpool

To open a pool of a specific size:

parpool(4)

To use a cluster other than your default and specify where the pool runs:

parpool('MyCluster',4)

You can run a parallel pool on different parallel environments. For more information, see “Choose
Between Thread-Based and Process-Based Environments” on page 2-61.

Shut Down a Parallel Pool

To get the current parallel pool and use that object when you want to shut down the pool:

p = gcp;
delete(p)

Ensure That No Parallel Pool Is Running

When you issue the command gcp without arguments, you might inadvertently open a pool. To avoid
this problem:

delete(gcp('nocreate'))
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Pool Size and Cluster Selection
There are several places to specify pool size. Several factors might limit the size of a pool. The actual
size of your parallel pool is determined by the combination of the following:

1 Licensing or cluster size

The maximum limit on the number of workers in a pool is restricted by the number of workers in
your cluster. This limit might be determined by the number of MATLAB Parallel Server licenses
available. In the case of MATLAB Job Scheduler, the limit might be determined by the number of
workers running in the cluster. A local cluster running on the client machine requires no
licensing beyond the one for Parallel Computing Toolbox. The limit on the number of workers is
high enough to support the range of known desktop hardware.

2 Cluster profile number of workers (NumWorkers)

A cluster object can set a hard limit on the number of workers, which you specify in the cluster
profile. Even if you request more workers at the command line or in your preferences, you cannot
exceed the limit set in the applicable profile. Attempting to exceed this number generates an
error.

3 Command-line argument

If you specify a pool size at the command line, you override the setting of your preferences. This
value must fall within the limits of the applicable cluster profile.

4 Parallel preferences

If you do not specify a pool size at the command line, MATLAB attempts to start a pool with size
determined by your parallel preferences. This value is a preference, not a requirement or a
request for a specific number of workers. So if a pool cannot start with as many workers as called
for in your preferences, you get a smaller pool without any errors. You can set the value of the
Preferred number of workers to a large number, so that it never limits the size of the pool that
is created. If you need an exact number of workers, specify the number at the command line.

For selection of the cluster on which the pool runs, precedence is determined by the following.

1 The command-line cluster object argument overrides the default profile setting and uses the
cluster identified by the profile 'MyProfile'.

c = parcluster('MyProfile');
p = parpool(c);

2 The cluster is specified in the default profile.

p = parpool;

See Also
delete | distributed | gcp | parcluster | parfeval | parfor | parpool | spmd

Related Examples
• “Run MATLAB Functions with Automatic Parallel Support” on page 1-20
• “Scale up from Desktop to Cluster”
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More About
• “How Parallel Computing Products Run a Job” on page 5-2
• “Decide When to Use parfor” on page 2-2
• “Specify Your Parallel Preferences” on page 5-9
• “Discover Clusters and Use Cluster Profiles” on page 5-11
• “Scale Up parfor-Loops to Cluster and Cloud” on page 2-21
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Choose Between Thread-Based and Process-Based
Environments

With Parallel Computing Toolbox, you can run your parallel code in different parallel environments,
such as thread-based or process-based environments. These environments offer different advantages.

Note that thread-based environments support only a subset of the MATLAB functions available for
process workers. If you are interested in a function that is not supported, let the MathWorks
Technical Support team know. For more information on support, see “Check Support for Thread-
Based Environment” on page 2-68.

Select Parallel Environment
Depending on the type of parallel environment you select, features run on either process workers or
thread workers. To decide which environment is right for you, consult the following diagram and
table.

 Choose Between Thread-Based and Process-Based Environments
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• To use parallel pool features, such as parfor or parfeval, create a parallel pool in the chosen
environment by using the parpool function.

Environment Recommendation Example
Thread-based environment on
local machine

Use this setup for reduced
memory usage, faster
scheduling, and lower data
transfer costs.

parpool('threads')

Note If you choose
'threads', check that your
code is supported. For more
information, see “Check
Support for Thread-Based
Environment” on page 2-68.

To find out if you can get
sufficient benefit from a
thread-based pool, measure
data transfer in a process-
based pool with ticBytes
and tocBytes. If the data
transfer is large, such as
above 100 MB, then use
'threads'.

Process-based environment
on local machine

Use this setup for most use
cases and for prototyping
before scaling to clusters or
clouds.

parpool('local')

Process-based environment
on remote cluster

Use this setup to scale up
your computations.

parpool('MyCluster')

where MyCluster is the
name of a cluster profile.

• To use cluster features, such as batch, create a cluster object in the chosen environment by using
the parcluster function. Note that cluster features are supported only in process-based
environments.

Environment Recommendation Example
Process-based environment
on local machine

Use this setup if you have
sufficient local resources, or
to prototype before scaling to
clusters or clouds.

parcluster('local')

Process-based environment
on remote cluster

Use this setup to scale up
your computations.

parcluster('MyCluster')

where MyCluster is the
name of a cluster profile.

Recommendation Defaulting to process-based environments is recommended.

• They support the full parallel language.
• They are backwards compatible with previous releases.
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• They are more robust in the event of crashes.
• External libraries do not need to be thread-safe.

Choose thread-based environments when:

• Your parallel code is supported by thread-based environments.
• You want reduced memory usage, faster scheduling and lower data transfer costs.

Compare Process Workers and Thread Workers
The following shows a performance comparison between process workers and thread workers for an
example that leverages the efficiency of thread workers.

Create some data.

X = rand(10000, 10000);

Create a parallel pool of process workers.

pool = parpool('local');

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Time the execution and measure data transfer of some parallel code. For this example, use a
parfeval execution.

ticBytes(pool);
tProcesses = timeit(@() fetchOutputs(parfeval(@sum,1,X,'all')))
tocBytes(pool)

tProcesses = 3.9060

             BytesSentToWorkers    BytesReceivedFromWorkers
             __________________    ________________________

    1                   0                       0          
    2                   0                       0          
    3                   0                       0          
    4                   0                       0          
    5             5.6e+09                   16254          
    6                   0                       0          
    Total         5.6e+09                   16254     

Note that the data transfer is significant. To avoid incurring data transfer costs, you can use thread
workers. Delete the current parallel pool and create a thread-based parallel pool.

delete(pool);
pool = parpool('threads');

Time how long the same code takes to run.

tThreads = timeit(@() fetchOutputs(parfeval(@sum,1,X,'all')))

tThreads = 0.0232
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Compare the times.

fprintf('Without data transfer, this example is %.2fx faster.\n', tProcesses/tThreads)

Without data transfer, this example is 168.27x faster.

Thread workers outperform process workers because thread workers can use the data X without
copying it, and they have less scheduling overhead.

Solve Optimization Problem in Parallel on Thread-Based Pool
This example shows how to use a thread-based pool to solve an optimization problem in parallel.
Thread-based pools are optimized for less data transfer, faster scheduling, and reduced memory
usage, so they can result in a performance gain in your applications.

This example requires Global Optimization Toolbox.

Problem Description

The problem is to change the position and angle of a cannon to fire a projectile as far as possible
beyond a wall. The cannon has a muzzle velocity of 300 m/s. The wall is 20 m high. If the cannon is
too close to the wall, it fires at too steep an angle, and the projectile does not travel far enough. If the
cannon is too far from the wall, the projectile does not travel far enough. For full problem details, see
“Optimize an ODE in Parallel” (Global Optimization Toolbox) or the latter part of the video Surrogate
Optimization.

MATLAB Problem Formulation

To solve the problem, call the patternsearch solver from Global Optimization Toolbox. The
objective function is in the cannonobjective helper function, which calculates the distance the
projectile lands beyond the wall for a given position and angle. The constraint is in the
cannonconstraint helper function, which calculates whether the projectile hits the wall or not, or
even reaches the wall before hitting the ground. The helper functions are in separate files that you
can view when you run this example.

Set the following inputs for the patternsearch solver. Note that, to use Parallel Computing Toolbox,
you must set UseParallel to true in the optimization options.

lb = [-200;0.05];
ub = [-1;pi/2-.05];
x0 = [-30,pi/3];
opts = optimoptions('patternsearch',...
    'UseCompletePoll', true, ...
    'Display','off',...
    'UseParallel',true);
% No linear constraints, so set those inputs to empty:
A = [];
b = [];
Aeq = [];
beq = [];

Solve on Process-Based Pool

For comparison, solve the problem on a process-based parallel pool first.

Start a parallel pool of process workers.
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p = parpool('local');

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

To reproduce the same computations later, seed the random generator with the default value.

rng default;

Use a loop to solve the problem several times and average the results.

tProcesses = zeros(5,1);
for repetition = 1:numel(tProcesses)
    tic
    [xsolution,distance,eflag,outpt] = patternsearch(@cannonobjective,x0, ...
        A,b,Aeq,beq,lb,ub,@cannonconstraint,opts);
    tProcesses(repetition) = toc;
end
tProcesses = mean(tProcesses)

tProcesses = 2.7677

To compare next with a thread-based pool, delete the current parallel pool.

delete(p);

Solve on Thread-Based Pool

Start a parallel pool of thread workers.

p = parpool('threads');

Starting parallel pool (parpool) ...
Connected to the parallel pool (number of workers: 6).

Retore the random number generator to default settings and run the same code as before.

rng default
tThreads = zeros(5,1);
for repetition = 1:numel(tThreads)
    tic
    [xsolution,distance,eflag,outpt] = patternsearch(@cannonobjective,x0, ...
        A,b,Aeq,beq,lb,ub,@cannonconstraint,opts);
    tThreads(repetition) = toc;
end
tThreads = mean(tThreads)

tThreads = 1.5790

Compare the performance of thread workers and process workers.

fprintf('In this example, thread workers are %.2fx faster than process workers.\n', tProcesses/tThreads)

In this example, thread workers are 1.75x faster than process workers.

Notice the performance gain due to the optimizations of the thread-based pool.

When you are done with computations, delete the parallel pool.
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delete(p);

What Are Thread-Based Environments?
In thread-based environments, parallel language features run on workers that are backed by
computing threads, which run code on cores on a machine. They differ from computing processes in
that they coexist within the same process and can share memory.

Thread-based environments have the following advantages over process-based environments.

• Because thread workers can share memory, they can access numeric data without copying, so they
are more memory efficient.

• Communication between threads is less time consuming. Therefore, the overhead of scheduling a
task or inter-worker communication is smaller.

When you use thread-based environments, keep the following considerations in mind.

• Check that your code is supported for a thread-based environment. For more information, see
“Check Support for Thread-Based Environment” on page 2-68.

• If you are using external libraries from workers, then you must ensure that the library functions
are thread-safe.

What are Process-Based Environments?
In process-based environments, parallel language features run on workers that are backed by
computing processes, which run code on cores on a machine. They differ from computing threads in
that they are independent of each other.
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Process-based environments have the following advantages over thread-based environments.

• They support all language features and are backwards compatible with previous releases.
• They are more robust in the event of crashes. If a process worker crashes, then the MATLAB client

does not crash. If a process worker crashes and your code does not use spmd or distributed
arrays, then the rest of the workers can continue running.

• If you use external libraries from workers, then you do not need to pay attention to thread-safety.
• You can use cluster features, such as batch.

When you use a process-based environment, keep the following consideration in mind.

• If your code accesses files from workers, then you must use additional options, such as
'AttachedFiles' or 'AdditionalPaths', to make the data accessible.

Check Support for Thread-Based Environment
Thread workers support only a subset of the MATLAB functions available for process workers. If you
are interested in a function that is not supported, let the MathWorks Technical Support team know.

The parallel language features that are supported are parpool, parfor, parfeval,
parfevalOnAll, tall, and parallel.pool.Constant, subject to the following limitations.

• A thread-based parallel pool does not have an associated cluster object.
• afterEach and afterAll are not supported.
• FevalQueue is not supported.
• Tall arrays do not support write and support only tabular text and in-memory inputs.

Other parallel language features, including spmd, distributed, and parallel.pool.DataQueue,
are not supported.

In general, many core features of MATLAB are supported, including:

• Language fundamentals
• Mathematics
• Core data types (double, single, logical, integer types, char, cell arrays, string, table, timetable,

categorical, datetime, and duration)
• Control flow and logic (for example, if, for loops, and while loops)
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• Scripts, functions and classes
• Custom classes

In general, features that modify or access things outside of the thread worker are not supported,
including:

• Data import and export
• Graphics
• External languages

Tip Try running your code on a thread-based pool. MATLAB displays an error message if it
encounters any unsupported functions.

See Also
parcluster | parpool

Related Examples
• “Run Code on Parallel Pools” on page 2-56
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Repeat Random Numbers in parfor-Loops
As described in “Control Random Number Streams on Workers” on page 5-29, each worker in a
cluster working on the same job has an independent random number generator stream. By default,
therefore, each worker in a pool, and each iteration in a parfor-loop has a unique, independent set
of random numbers. Subsequent runs of the parfor-loop generate different numbers.

In a parfor-loop, you cannot control what sequence the iterations execute in, nor can you control
which worker runs which iterations. So even if you reset the random number generators, the parfor-
loop can generate the same values in a different sequence.

To reproduce the same set of random numbers in a parfor-loop each time the loop runs, you must
control random generation by assigning a particular substream for each iteration.

First, create the stream you want to use, using a generator that supports substreams. Creating the
stream as a parallel.pool.Constant allows all workers to access the stream.

sc = parallel.pool.Constant(RandStream('Threefry'))

Inside the parfor-loop, you can set the substream index by the loop index. This ensures that each
iteration uses its particular set of random numbers, regardless of which worker runs that iteration or
what sequence iterations run in.

r = zeros(1,16);
parfor i = 1:16
    stream = sc.Value;        % Extract the stream from the Constant
    stream.Substream = i;
    r(i) = rand(stream);
end
r

r =

  Columns 1 through 8

    0.3640    0.8645    0.0440    0.7564    0.5323    0.8075    0.2145    0.9128

  Columns 9 through 16

    0.4057    0.0581    0.5515    0.4347    0.3531    0.4677    0.8287    0.2312

See Also
RandStream | rng

More About
• “Control Random Number Streams on Workers” on page 5-29
• “Creating and Controlling a Random Number Stream” (MATLAB)
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Recommended System Limits for Macintosh and Linux
If you use a UNIX® system (Linux® or Macintosh), it is recommended that you adjust your operating
system limits. Check and set limits with the ulimit or limit command, depending on your
installation. Note that these commands might require root access.

System Limit Recommended Value Option (ulimit) Option (limit)
Maximum number of
user processes

23741 -u maxproc

Maximum number of
open file descriptors

4096 -n descriptors

For example, these commands set the maximum number of user processes.

ulimit - u 23741
limit maxproc 23741

Changing a limit inside a shell affects only that shell and any subsequent MATLAB sessions you start
there. To make this setting persistent system-wide, you must modify the relevant file.

• Linux – Modify the limits.conf file.
• Macintosh – Modify plist files, such as limit.maxfiles.plist and limit.maxproc.plist.

For assistance, check with your system administrator.

For more information on ulimit, limit, or limits.conf, see their man pages.

Without these settings, large parallel pools can error, hang, or lose workers during creation. These
problems occur when MATLAB attempts to create more user processes or file handles than your
operating system allows.

If you use a cluster of machines, you must set the maximum number of user processes for each
machine.

See Also

More About
• “What Is a Parallel Pool?” on page 2-56
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Single Program Multiple Data (spmd)

• “Run Single Programs on Multiple Data Sets” on page 3-2
• “Access Worker Variables with Composites” on page 3-7
• “Distributing Arrays to Parallel Workers” on page 3-10

3



Run Single Programs on Multiple Data Sets
In this section...
“Introduction” on page 3-2
“When to Use spmd” on page 3-2
“Define an spmd Statement” on page 3-2
“Display Output” on page 3-4
“MATLAB Path” on page 3-4
“Error Handling” on page 3-4
“spmd Limitations” on page 3-4

Introduction
The single program multiple data (spmd) language construct allows seamless interleaving of serial
and parallel programming. The spmd statement lets you define a block of code to run simultaneously
on multiple workers. Variables assigned inside the spmd statement on the workers allow direct access
to their values from the client by reference via Composite objects.

This chapter explains some of the characteristics of spmd statements and Composite objects.

When to Use spmd
The “single program” aspect of spmd means that the identical code runs on multiple workers. You run
one program in the MATLAB client, and those parts of it labeled as spmd blocks run on the workers.
When the spmd block is complete, your program continues running in the client.

The “multiple data” aspect means that even though the spmd statement runs identical code on all
workers, each worker can have different, unique data for that code. So multiple data sets can be
accommodated by multiple workers.

Typical applications appropriate for spmd are those that require running simultaneous execution of a
program on multiple data sets, when communication or synchronization is required between the
workers. Some common cases are:

• Programs that take a long time to execute — spmd lets several workers compute solutions
simultaneously.

• Programs operating on large data sets — spmd lets the data be distributed to multiple workers.

Define an spmd Statement
The general form of an spmd statement is:

spmd
    <statements>
end

Note If a parallel pool is not running, spmd creates a pool using your default cluster profile, if your
parallel preferences are set accordingly.
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The block of code represented by <statements> executes in parallel simultaneously on all workers
in the parallel pool. If you want to limit the execution to only a portion of these workers, specify
exactly how many workers to run on:

spmd (n)
    <statements>
end

This statement requires that n workers run the spmd code. n must be less than or equal to the
number of workers in the open parallel pool. If the pool is large enough, but n workers are not
available, the statement waits until enough workers are available. If n is 0, the spmd statement uses
no workers, and runs locally on the client, the same as if there were not a pool currently running.

You can specify a range for the number of workers:

spmd (m,n)
    <statements>
end

In this case, the spmd statement requires a minimum of m workers, and it uses a maximum of n
workers.

If it is important to control the number of workers that execute your spmd statement, set the exact
number in the cluster profile or with the spmd statement, rather than using a range.

For example, create a random matrix on three workers:

spmd (3)
    R = rand(4,4);
end

Note All subsequent examples in this chapter assume that a parallel pool is open and remains open
between sequences of spmd statements.

Unlike a parfor-loop, the workers used for an spmd statement each have a unique value for
labindex. This lets you specify code to be run on only certain workers, or to customize execution,
usually for the purpose of accessing unique data.

For example, create different sized arrays depending on labindex:

spmd (3)
    if labindex==1 
        R = rand(9,9);
      else
        R = rand(4,4);
    end
end

Load unique data on each worker according to labindex, and use the same function on each worker
to compute a result from the data:

spmd (3)
    labdata = load(['datafile_' num2str(labindex) '.ascii'])
    result = MyFunction(labdata)
end
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The workers executing an spmd statement operate simultaneously and are aware of each other. As
with a communicating job, you are allowed to directly control communications between the workers,
transfer data between them, and use codistributed arrays among them.

For example, use a codistributed array in an spmd statement:

spmd (3)
    RR = rand(30, codistributor());
end

Each worker has a 30-by-10 segment of the codistributed array RR. For more information about
codistributed arrays, see “Working with Codistributed Arrays” on page 4-4.

Display Output
When running an spmd statement on a parallel pool, all command-line output from the workers
displays in the client Command Window. Because the workers are MATLAB sessions without displays,
any graphical output (for example, figure windows) from the pool does not display at all.

MATLAB Path
All workers executing an spmd statement must have the same MATLAB search path as the client, so
that they can execute any functions called in their common block of code. Therefore, whenever you
use cd, addpath, or rmpath on the client, it also executes on all the workers, if possible. For more
information, see the parpool reference page. When the workers are running on a different platform
than the client, use the function pctRunOnAll to properly set the MATLAB path on all workers.

Error Handling
When an error occurs on a worker during the execution of an spmd statement, the error is reported
to the client. The client tries to interrupt execution on all workers, and throws an error to the user.

Errors and warnings produced on workers are annotated with the worker ID (labindex) and
displayed in the client’s Command Window in the order in which they are received by the MATLAB
client.

The behavior of lastwarn is unspecified at the end of an spmd if used within its body.

spmd Limitations
Nested Functions

Inside a function, the body of an spmd statement cannot reference a nested function. However, it can
call a nested function by means of a variable defined as a function handle to the nested function.

Because the spmd body executes on workers, variables that are updated by nested functions called
inside an spmd statement are not updated in the workspace of the outer function.

Nested spmd Statements

The body of an spmd statement cannot directly contain another spmd. However, it can call a function
that contains another spmd statement. The inner spmd statement does not run in parallel in another
parallel pool, but runs serially in a single thread on the worker running its containing function.

3 Single Program Multiple Data (spmd)

3-4



Nested parfor-Loops

An spmd statement cannot contain a parfor-loop, and the body of a parfor-loop cannot contain an
spmd statement. The reason is that workers cannot start or access further parallel pools.

break, continue, and return Statements

The body of an spmd statement cannot contain break, continue, or return statements. Consider
parfeval or parfevalOnAll instead of spmd, because you can use cancel on them.

Global and Persistent Variables

The body of an spmd statement cannot contain global or persistent variable declarations. The
reason is that these variables are not synchronized between workers. You can use global or
persistent variables within functions, but their value is only visible to the worker that creates
them. Instead of global variables, it is a better practice to use function arguments to share values.

Anonymous Functions

The body of an spmd statement cannot define an anonymous function. However, it can reference an
anonymous function by means of a function handle.

inputname Functions

Using inputname to return the workspace variable name corresponding to an argument number is
not supported inside spmd. The reason is that spmd workers do not have access to the workspace of
the MATLAB desktop. To work around this, call inputname before spmd, as shown in the following
example.

a = 'a';
myFunction(a)

function X = myFunction(a)
name = inputname(1);
spmd
    X.(name) = labindex;
end
X = [X{:}];
end
    

load Functions

The syntaxes of load that do not assign to an output structure are not supported inside spmd
statements. Inside spmd, always assign the output of load to a structure.

nargin or nargout Functions

The following uses are not supported inside spmd statements:

• Using nargin or nargout without a function argument
• Using narginchk or nargoutchk to validate the number of input or output arguments in a call to

the function that is currently executing

The reason is that workers do not have access to the workspace of the MATLAB desktop. To work
around this, call these functions before spmd.
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myFunction('a','b')

function myFunction(a,b)
nin = nargin;
spmd
    X = labindex*nin;
end
end
    

P-Code Scripts

You can call P-code script files from within an spmd statement, but P-code scripts cannot contain an
spmd statement. To work around this, use a P-code function instead of a P-code script.

ans Variable

References to the ans variable defined outside an spmd statement are not supported inside the spmd
statement. Inside the body of an spmd statement, you must assign the ans variable before you use it.

See Also
spmd | Composite | parfeval | parfevalOnAll | parfor

More About
• “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-50
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Access Worker Variables with Composites
In this section...
“Introduction to Composites” on page 3-7
“Create Composites in spmd Statements” on page 3-7
“Variable Persistence and Sequences of spmd” on page 3-8
“Create Composites Outside spmd Statements” on page 3-9

Introduction to Composites
Composite objects in the MATLAB client session let you directly access data values on the workers.
Most often you assigned these variables within spmd statements. In their display and usage,
Composites resemble cell arrays. There are two ways to create Composites:

• Use the Composite function on the client. Values assigned to the Composite elements are stored
on the workers.

• Define variables on workers inside an spmd statement. After the spmd statement, the stored
values are accessible on the client as Composites.

Create Composites in spmd Statements
When you define or assign values to variables inside an spmd statement, the data values are stored on
the workers.

After the spmd statement, those data values are accessible on the client as Composites. Composite
objects resemble cell arrays, and behave similarly. On the client, a Composite has one element per
worker. For example, suppose you create a parallel pool of three local workers and run an spmd
statement on that pool:

parpool('local',3)

spmd  % Uses all 3 workers
    MM = magic(labindex+2); % MM is a variable on each worker
end
MM{1} % In the client, MM is a Composite with one element per worker

     8     1     6
     3     5     7
     4     9     2

MM{2}

    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

A variable might not be defined on every worker. For the workers on which a variable is not defined,
the corresponding Composite element has no value. Trying to read that element throws an error.

spmd
    if labindex > 1
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         HH = rand(4);
    end
end
HH

     Lab 1: No data
     Lab 2: class = double, size = [4  4]
     Lab 3: class = double, size = [4  4] 

You can also set values of Composite elements from the client. This causes a transfer of data, storing
the value on the appropriate worker even though it is not executed within an spmd statement:

MM{3} = eye(4);

In this case, MM must already exist as a Composite, otherwise MATLAB interprets it as a cell array.

Now when you do enter an spmd statement, the value of the variable MM on worker 3 is as set:

spmd
    if labindex == 3, MM, end
end

Lab 3: 
    MM =
         1     0     0     0
         0     1     0     0
         0     0     1     0
         0     0     0     1

Data transfers from worker to client when you explicitly assign a variable in the client workspace
using a Composite element:

M = MM{1} % Transfer data from worker 1 to variable M on the client

     8     1     6
     3     5     7
     4     9     2

Assigning an entire Composite to another Composite does not cause a data transfer. Instead, the
client merely duplicates the Composite as a reference to the appropriate data stored on the workers:

NN = MM % Set entire Composite equal to another, without transfer

However, accessing a Composite’s elements to assign values to other Composites does result in a
transfer of data from the workers to the client, even if the assignment then goes to the same worker.
In this case, NN must already exist as a Composite:

NN{1} = MM{1} % Transfer data to the client and then to worker

When finished, you can delete the pool:

delete(gcp)

Variable Persistence and Sequences of spmd
The values stored on the workers are retained between spmd statements. This allows you to use
multiple spmd statements in sequence, and continue to use the same variables defined in previous
spmd blocks.

3 Single Program Multiple Data (spmd)

3-8



The values are retained on the workers until the corresponding Composites are cleared on the client,
or until the parallel pool is deleted. The following example illustrates data value lifespan with spmd
blocks, using a pool of four workers:

parpool('local',4)

spmd
    AA = labindex; % Initial setting
end
AA(:)  % Composite

    [1]
    [2]
    [3]
    [4]

spmd
    AA = AA * 2; % Multiply existing value
end
AA(:)  % Composite

    [2]
    [4]
    [6]
    [8]

clear AA % Clearing in client also clears on workers

spmd; AA = AA * 2; end   % Generates error

delete(gcp)

Create Composites Outside spmd Statements
The Composite function creates Composite objects without using an spmd statement. This might be
useful to prepopulate values of variables on workers before an spmd statement begins executing on
those workers. Assume a parallel pool is already running:

PP = Composite()

By default, this creates a Composite with an element for each worker in the parallel pool. You can
also create Composites on only a subset of the workers in the pool. See the Composite reference page
for more details. The elements of the Composite can now be set as usual on the client, or as variables
inside an spmd statement. When you set an element of a Composite, the data is immediately
transferred to the appropriate worker:

for ii = 1:numel(PP)
    PP{ii} = ii; 
end
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Distributing Arrays to Parallel Workers
In this section...
“Using Distributed Arrays to Partition Data Across Workers” on page 3-10
“Load Distributed Arrays in Parallel Using datastore” on page 3-10
“Alternative Methods for Creating Distributed and Codistributed Arrays” on page 3-12

Using Distributed Arrays to Partition Data Across Workers
Depending on how your data fits in memory, choose one of the following methods:

• If your data is currently in the memory of your local machine, you can use the distributed
function to distribute an existing array from the client workspace to the workers of a parallel pool.
This option can be useful for testing or before performing operations which significantly increase
the size of your arrays, such as repmat.

• If your data does not fit in the memory of your local machine, but does fit in the memory of your
cluster, you can use datastore with the distributed function to read data into the memory of
the workers of a parallel pool.

• If your data does not fit in the memory of your cluster, you can use datastore with tall arrays
to partition and process your data in chunks. See also “Big Data Workflow Using Tall Arrays and
Datastores” on page 5-46.

Load Distributed Arrays in Parallel Using datastore
If your data does not fit in the memory of your local machine, but does fit in the memory of your
cluster, you can use datastore with the distributed function to create distributed arrays and
partition the data among your workers.

This example shows how to create and load distributed arrays using datastore. Create a datastore
using a tabular file of airline flight data. This data set is too small to show equal partitioning of the
data over the workers. To simulate a large data set, artificially increase the size of the datastore using
repmat.

files = repmat({'airlinesmall.csv'}, 10, 1);
ds = tabularTextDatastore(files);

Select the example variables.

ds.SelectedVariableNames = {'DepTime','DepDelay'};
ds.TreatAsMissing = 'NA';

Create a distributed table by reading the datastore in parallel. Partition the datastore with one
partition per worker. Each worker then reads all data from the corresponding partition. The files must
be in a shared location that is accessible by the workers.

dt = distributed(ds);

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

Display summary information about the distributed table.

summary(dt) 
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Variables:

    DepTime: 1,235,230×1 double
        Values:

            min          1
            max       2505
            NaNs    23,510

    DepDelay: 1,235,230×1 double
        Values:

            min      -1036
            max       1438
            NaNs    23,510

Determine the size of the tall table.

size(dt) 

ans =

     1235230           2

Return the first few rows of dt.

head(dt) 

ans =

    DepTime    DepDelay
    _______    ________

     642       12      
    1021        1      
    2055       20      
    1332       12      
     629       -1      
    1446       63      
     928       -2      
     859       -1      
    1833        3      
    1041        1      

Finally, check how much data each worker has loaded.

spmd, dt, end

Lab 1: 
  
  This worker stores dt2(1:370569,:).
  
          LocalPart: [370569×2 table]
      Codistributor: [1×1 codistributor1d]
  
Lab 2: 
  
  This worker stores dt2(370570:617615,:).
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          LocalPart: [247046×2 table]
      Codistributor: [1×1 codistributor1d]
  
Lab 3: 
  
  This worker stores dt2(617616:988184,:).
  
          LocalPart: [370569×2 table]
      Codistributor: [1×1 codistributor1d]
  
Lab 4: 
  
  This worker stores dt2(988185:1235230,:).
  
          LocalPart: [247046×2 table]
      Codistributor: [1×1 codistributor1d]

Note that the data is partitioned equally over the workers. For more details on datastore, see
“What Is a Datastore?” (MATLAB)

For more details about workflows for big data, see “Choose a Parallel Computing Solution” on page 1-
16.

Alternative Methods for Creating Distributed and Codistributed Arrays
If your data fits in the memory of your local machine, you can use distributed arrays to partition the
data among your workers. Use the distributed function to create a distributed array in the
MATLAB client, and store its data on the workers of the open parallel pool. A distributed array is
distributed in one dimension, and as evenly as possible along that dimension among the workers. You
cannot control the details of distribution when creating a distributed array.

You can create a distributed array in several ways:

• Use the distributed function to distribute an existing array from the client workspace to the
workers of a parallel pool.

• Use any of the distributed functions to directly construct a distributed array on the workers.
This technique does not require that the array already exists in the client, thereby reducing client
workspace memory requirements. Functions include eye(___,'distributed') and
rand(___,'distributed'). For a full list, see the distributed object reference page.

• Create a codistributed array inside an spmd statement, and then access it as a distributed array
outside the spmd statement. This technique lets you use distribution schemes other than the
default.

The first two techniques do not involve spmd in creating the array, but you can use spmd to
manipulate arrays created this way. For example:

Create an array in the client workspace, and then make it a distributed array.

parpool('local',2) % Create pool
W = ones(6,6);
W = distributed(W); % Distribute to the workers
spmd
    T = W*2; % Calculation performed on workers, in parallel.
             % T and W are both codistributed arrays here.
end
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T            % View results in client.
whos         % T and W are both distributed arrays here.
delete(gcp)  % Stop pool

Alternatively, you can use the codistributed function, which allows you to control more options
such as dimensions and partitions, but is often more complicated. You can create a codistributed
array by executing on the workers themselves, either inside an spmd statement or inside a
communicating job. When creating a codistributed array, you can control all aspects of
distribution, including dimensions and partitions.

The relationship between distributed and codistributed arrays is one of perspective. Codistributed
arrays are partitioned among the workers from which you execute code to create or manipulate them.
When you create a distributed array in the client, you can access it as a codistributed array inside an
spmd statement. When you create a codistributed array in an spmd statement, you can access it as a
distributed array in the client. Only spmd statements let you access the same array data from two
different perspectives.

You can create a codistributed array in several ways:

• Use the codistributed function inside an spmd statement or a communicating job to
codistribute data already existing on the workers running that job.

• Use any of the codistributed functions to directly construct a codistributed array on the workers.
This technique does not require that the array already exists in the workers. Functions include
eye(___,'codistributed') and rand(___,'codistributed'). For a full list, see the
codistributed object reference page.

• Create a distributed array outside an spmd statement, then access it as a codistributed array
inside the spmd statement running on the same parallel pool.

Create a codistributed array inside an spmd statement using a nondefault distribution scheme. First,
define 1-D distribution along the third dimension, with 4 parts on worker 1, and 12 parts on worker 2.
Then create a 3-by-3-by-16 array of zeros.

parpool('local',2) % Create pool
spmd
    codist = codistributor1d(3,[4,12]);
    Z = zeros(3,3,16,codist);
    Z = Z + labindex;
end
Z  % View results in client.
   % Z is a distributed array here.
delete(gcp) % Stop pool

For more details on codistributed arrays, see “Working with Codistributed Arrays” on page 4-4.

See Also
codistributed | datastore | distributed | eye | rand | repmat | spmd | tall

Related Examples
• “Run MATLAB Functions with Distributed Arrays” on page 4-19
• “Big Data Workflow Using Tall Arrays and Datastores” on page 5-46
• “What Is a Datastore?” (MATLAB)
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• “Choose a Parallel Computing Solution” on page 1-16
• “Use Tall Arrays on a Parallel Pool” on page 5-48

More About
• “Datastore” (MATLAB)
• “Tall Arrays for Out-of-Memory Data” (MATLAB)
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Math with Codistributed Arrays

This chapter describes the distribution or partition of data across several workers, and the
functionality provided for operations on that data in spmd statements, communicating jobs, and
pmode. The sections are as follows.

• “Nondistributed Versus Distributed Arrays” on page 4-2
• “Working with Codistributed Arrays” on page 4-4
• “Looping Over a Distributed Range (for-drange)” on page 4-16
• “Run MATLAB Functions with Distributed Arrays” on page 4-19
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Nondistributed Versus Distributed Arrays
In this section...
“Introduction” on page 4-2
“Nondistributed Arrays” on page 4-2
“Codistributed Arrays” on page 4-3

Introduction
Many built-in data types and data structures supported by MATLAB software are also supported in
the MATLAB parallel computing environment. This includes arrays of any number of dimensions
containing numeric, character, logical values, cells, or structures. In addition to these basic building
blocks, the MATLAB parallel computing environment also offers different types of arrays.

Nondistributed Arrays
When you create a nondistributed array, MATLAB constructs a separate array in the workspace of
each worker, using the same variable name on all workers. Any operation performed on that variable
affects all individual arrays assigned to it. If you display from worker 1 the value assigned to this
variable, all workers respond by showing the array of that name that resides in their workspace.

The state of a nondistributed array depends on the value of that array in the workspace of each
worker:

• “Replicated Arrays” on page 4-2
• “Variant Arrays” on page 4-2
• “Private Arrays” on page 4-3

Replicated Arrays

A replicated array resides in the workspaces of all workers, and its size and content are identical on
all workers. When you create the array, MATLAB assigns it to the same variable on all workers. If you
display in spmd the value assigned to this variable, all workers respond by showing the same array.

spmd, A = magic(3), end

 WORKER 1      WORKER 2      WORKER 3      WORKER 4
           |             |             |
8   1   6  |  8   1   6  |  8   1   6  |  8   1   6
3   5   7  |  3   5   7  |  3   5   7  |  3   5   7
4   9   2  |  4   9   2  |  4   9   2  |  4   9   2

Variant Arrays

A variant array also resides in the workspaces of all workers, but its content differs on one or more
workers. When you create the array, MATLAB assigns a different value to the same variable on all
workers. If you display the value assigned to this variable, all workers respond by showing their
version of the array.

spmd, A = magic(3) + labindex - 1, end

4 Math with Codistributed Arrays

4-2



 WORKER 1      WORKER 2      WORKER 3      WORKER 4
           |             |             |
8   1   6  |  9   2   7  | 10   3   8  | 11   4   9
3   5   7  |  4   6   9  |  5   7   9  |  6   8  10
4   9   2  |  5  10   3  |  6  11   4  |  7  12   5

A replicated array can become a variant array when its value becomes unique on each worker.

spmd
    B = magic(3);      %replicated on all workers
    B = B + labindex;  %now a variant array, different on each worker
end

Private Arrays

A private array is defined on one or more, but not all workers. You could create this array by using
labindex in a conditional statement, as shown here:

spmd
    if labindex >= 3, A = magic(3) + labindex - 1, end
end

 WORKER 1       WORKER 2        WORKER 3       WORKER 4
            |              |              |
  A is      |    A is      |  10   3   8  |  11   4   9
undefined   |  undefined   |   5   7   9  |   6   8  10
                           |   6  11   4  |   7  12   5

Codistributed Arrays
With replicated and variant arrays, the full content of the array is stored in the workspace of each
worker. Codistributed arrays, on the other hand, are partitioned into segments, with each segment
residing in the workspace of a different worker. Each worker has its own array segment to work with.
Reducing the size of the array that each worker has to store and process means a more efficient use
of memory and faster processing, especially for large data sets.

This example distributes a 3-by-10 replicated array A across four workers. The resulting array D is
also 3-by-10 in size, but only a segment of the full array resides on each worker.

spmd
    A = [11:20; 21:30; 31:40];
    D = codistributed(A);
    getLocalPart(D)
end

  WORKER 1       WORKER 2   WORKER 3   WORKER 4
            |              |          |
11  12  13  |  14  15  16  |  17  18  |  19  20
21  22  23  |  24  25  26  |  27  28  |  29  30
31  32  33  |  34  35  36  |  37  38  |  39  40

For more details on using codistributed arrays, see “Working with Codistributed Arrays” on page 4-
4.
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Working with Codistributed Arrays
In this section...
“How MATLAB Software Distributes Arrays” on page 4-4
“Creating a Codistributed Array” on page 4-5
“Local Arrays” on page 4-8
“Obtaining information About the Array” on page 4-9
“Changing the Dimension of Distribution” on page 4-10
“Restoring the Full Array” on page 4-10
“Indexing into a Codistributed Array” on page 4-11
“2-Dimensional Distribution” on page 4-12

How MATLAB Software Distributes Arrays
When you distribute an array to a number of workers, MATLAB software partitions the array into
segments and assigns one segment of the array to each worker. You can partition a two-dimensional
array horizontally, assigning columns of the original array to the different workers, or vertically, by
assigning rows. An array with N dimensions can be partitioned along any of its N dimensions. You
choose which dimension of the array is to be partitioned by specifying it in the array constructor
command.

For example, to distribute an 80-by-1000 array to four workers, you can partition it either by columns,
giving each worker an 80-by-250 segment, or by rows, with each worker getting a 20-by-1000
segment. If the array dimension does not divide evenly over the number of workers, MATLAB
partitions it as evenly as possible.

The following example creates an 80-by-1000 replicated array and assigns it to variable A. In doing
so, each worker creates an identical array in its own workspace and assigns it to variable A, where A
is local to that worker. The second command distributes A, creating a single 80-by-1000 array D that
spans all four workers. Worker 1 stores columns 1 through 250, worker 2 stores columns 251 through
500, and so on. The default distribution is by the last nonsingleton dimension, thus, columns in this
case of a 2-dimensional array.

spmd
  A = zeros(80, 1000);
  D = codistributed(A)
end

    Lab 1: This lab stores D(:,1:250).
    Lab 2: This lab stores D(:,251:500).
    Lab 3: This lab stores D(:,501:750).
    Lab 4: This lab stores D(:,751:1000).

Each worker has access to all segments of the array. Access to the local segment is faster than to a
remote segment, because the latter requires sending and receiving data between workers and thus
takes more time.
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How MATLAB Displays a Codistributed Array

For each worker, the MATLAB Parallel Command Window displays information about the
codistributed array, the local portion, and the codistributor. For example, an 8-by-8 identity matrix
codistributed among four workers, with two columns on each worker, displays like this:

>> spmd
II = eye(8,'codistributed')
end
Lab 1: 
  This lab stores II(:,1:2).
          LocalPart: [8x2 double]
      Codistributor: [1x1 codistributor1d]
Lab 2: 
  This lab stores II(:,3:4).
          LocalPart: [8x2 double]
      Codistributor: [1x1 codistributor1d]
Lab 3: 
  This lab stores II(:,5:6).
          LocalPart: [8x2 double]
      Codistributor: [1x1 codistributor1d]
Lab 4: 
  This lab stores II(:,7:8).
          LocalPart: [8x2 double]
      Codistributor: [1x1 codistributor1d]

To see the actual data in the local segment of the array, use the getLocalPart function.

How Much Is Distributed to Each Worker

In distributing an array of N rows, if N is evenly divisible by the number of workers, MATLAB stores
the same number of rows (N/numlabs) on each worker. When this number is not evenly divisible by
the number of workers, MATLAB partitions the array as evenly as possible.

MATLAB provides codistributor object properties called Dimension and Partition that you can use
to determine the exact distribution of an array. See “Indexing into a Codistributed Array” on page 4-
11 for more information on indexing with codistributed arrays.

Distribution of Other Data Types

You can distribute arrays of any MATLAB built-in data type, and also numeric arrays that are complex
or sparse, but not arrays of function handles or object types.

Creating a Codistributed Array
You can create a codistributed array in any of the following ways:

• “Partitioning a Larger Array” on page 4-6 — Start with a large array that is replicated on all
workers, and partition it so that the pieces are distributed across the workers. This is most useful
when you have sufficient memory to store the initial replicated array.

• “Building from Smaller Arrays” on page 4-6 — Start with smaller variant or replicated arrays
stored on each worker, and combine them so that each array becomes a segment of a larger
codistributed array. This method reduces memory requirements as it lets you build a codistributed
array from smaller pieces.
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• “Using MATLAB Constructor Functions” on page 4-7 — Use any of the MATLAB constructor
functions like rand or zeros with a codistributor object argument. These functions offer a quick
means of constructing a codistributed array of any size in just one step.

Partitioning a Larger Array

If you have a large array already in memory that you want MATLAB to process more quickly, you can
partition it into smaller segments and distribute these segments to all of the workers using the
codistributed function. Each worker then has an array that is a fraction the size of the original,
thus reducing the time required to access the data that is local to each worker.

As a simple example, the following line of code creates a 4-by-8 replicated matrix on each worker
assigned to the variable A:

spmd, A = [11:18; 21:28; 31:38; 41:48], end
A =
    11    12    13    14    15    16    17    18
    21    22    23    24    25    26    27    28
    31    32    33    34    35    36    37    38
    41    42    43    44    45    46    47    48

The next line uses the codistributed function to construct a single 4-by-8 matrix D that is
distributed along the second dimension of the array:

spmd
    D = codistributed(A);
    getLocalPart(D)
end

1: Local Part  | 2: Local Part  | 3: Local Part  | 4: Local Part
    11    12   |     13    14   |     15    16   |     17    18
    21    22   |     23    24   |     25    26   |     27    28
    31    32   |     33    34   |     35    36   |     37    38
    41    42   |     43    44   |     45    46   |     47    48

Arrays A and D are the same size (4-by-8). Array A exists in its full size on each worker, while only a
segment of array D exists on each worker.

spmd, size(A), size(D), end

Examining the variables in the client workspace, an array that is codistributed among the workers
inside an spmd statement, is a distributed array from the perspective of the client outside the spmd
statement. Variables that are not codistributed inside the spmd, are Composites in the client outside
the spmd.

whos
  Name      Size            Bytes  Class 

  A         1x4               613  Composite
  D         4x8               649  distributed

See the codistributed function reference page for syntax and usage information.

Building from Smaller Arrays

The codistributed function is less useful for reducing the amount of memory required to store
data when you first construct the full array in one workspace and then partition it into distributed
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segments. To save on memory, you can construct the smaller pieces (local part) on each worker first,
and then use codistributed.build to combine them into a single array that is distributed across
the workers.

This example creates a 4-by-250 variant array A on each of four workers and then uses
codistributor to distribute these segments across four workers, creating a 4-by-1000
codistributed array. Here is the variant array, A:
spmd
  A = [1:250; 251:500; 501:750; 751:1000] + 250 * (labindex - 1);
end

    WORKER 1             WORKER 2             WORKER 3
  1    2 ... 250 |  251   252 ... 500 |  501   502 ... 750 | etc.
251  252 ... 500 |  501   502 ... 750 |  751   752 ...1000 | etc.
501  502 ... 750 |  751   752 ...1000 | 1001  1002 ...1250 | etc.
751  752 ...1000 | 1001  1002 ...1250 | 1251  1252 ...1500 | etc.
                 |                    |                    |

Now combine these segments into an array that is distributed by the first dimension (rows). The array
is now 16-by-250, with a 4-by-250 segment residing on each worker:

spmd
  D = codistributed.build(A, codistributor1d(1,[4 4 4 4],[16 250]))
end
Lab 1: 
    This lab stores D(1:4,:).
           LocalPart: [4x250 double]
      Codistributor: [1x1 codistributor1d]

whos
  Name       Size             Bytes  Class

  A          1x4                613  Composite
  D         16x250              649  distributed

You could also use replicated arrays in the same fashion, if you wanted to create a codistributed array
whose segments were all identical to start with. See the codistributed function reference page for
syntax and usage information.

Using MATLAB Constructor Functions

MATLAB provides several array constructor functions that you can use to build codistributed arrays
of specific values, sizes, and classes. These functions operate in the same way as their nondistributed
counterparts in the MATLAB language, except that they distribute the resultant array across the
workers using the specified codistributor object, codist.

Constructor Functions

The codistributed constructor functions are listed here. Use the codist argument (created by the
codistributor function: codist=codistributor()) to specify over which dimension to
distribute the array. See the individual reference pages for these functions for further syntax and
usage information.

eye(___,codist)
false(___,codist)
Inf(___,codist)
NaN(___,codist)
ones(___,codist)
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rand(___,codist)
randi(___,codist)
randn(___,codist)
true(___,codist)
zeros(___,codist)

codistributed.cell(m,n,...,codist)
codistributed.colon(a,d,b)
codistributed.linspace(m,n,...,codist)
codistributed.logspace(m,n,...,codist)
sparse(m,n,codist)
codistributed.speye(m,...,codist)
codistributed.sprand(m,n,density,codist)
codistributed.sprandn(m,n,density,codist)

Local Arrays
That part of a codistributed array that resides on each worker is a piece of a larger array. Each
worker can work on its own segment of the common array, or it can make a copy of that segment in a
variant or private array of its own. This local copy of a codistributed array segment is called a local
array.

Creating Local Arrays from a Codistributed Array

The getLocalPart function copies the segments of a codistributed array to a separate variant array.
This example makes a local copy L of each segment of codistributed array D. The size of L shows that
it contains only the local part of D for each worker. Suppose you distribute an array across four
workers:

spmd(4)
    A = [1:80; 81:160; 161:240];
    D = codistributed(A);
    size(D)
       L = getLocalPart(D);
    size(L)
end

returns on each worker:

3    80
3    20

Each worker recognizes that the codistributed array D is 3-by-80. However, notice that the size of the
local part, L, is 3-by-20 on each worker, because the 80 columns of D are distributed over four
workers.

Creating a Codistributed from Local Arrays

Use the codistributed.build function to perform the reverse operation. This function, described
in “Building from Smaller Arrays” on page 4-6, combines the local variant arrays into a single array
distributed along the specified dimension.

Continuing the previous example, take the local variant arrays L and put them together as segments
to build a new codistributed array X.

spmd
  codist = codistributor1d(2,[20 20 20 20],[3 80]);
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  X = codistributed.build(L,codist);
  size(X)
end

returns on each worker:

3    80

Obtaining information About the Array
MATLAB offers several functions that provide information on any particular array. In addition to these
standard functions, there are also two functions that are useful solely with codistributed arrays.

Determining Whether an Array Is Codistributed

The iscodistributed function returns a logical 1 (true) if the input array is codistributed, and
logical 0 (false) otherwise. The syntax is

spmd, TF = iscodistributed(D), end

where D is any MATLAB array.

Determining the Dimension of Distribution

The codistributor object determines how an array is partitioned and its dimension of distribution. To
access the codistributor of an array, use the getCodistributor function. This returns two
properties, Dimension and Partition:

spmd, getCodistributor(X), end

     Dimension: 2
     Partition: [20 20 20 20]

The Dimension value of 2 means the array X is distributed by columns (dimension 2); and the
Partition value of [20 20 20 20] means that twenty columns reside on each of the four workers.

To get these properties programmatically, return the output of getCodistributor to a variable,
then use dot notation to access each property:

spmd
    C = getCodistributor(X);
    part = C.Partition
    dim  = C.Dimension
end

Other Array Functions

Other functions that provide information about standard arrays also work on codistributed arrays and
use the same syntax.

• length — Returns the length of a specific dimension.
• ndims — Returns the number of dimensions.
• numel — Returns the number of elements in the array.
• size — Returns the size of each dimension.
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• is* — Many functions that have names beginning with 'is', such as ischar and issparse.

Changing the Dimension of Distribution
When constructing an array, you distribute the parts of the array along one of the array's dimensions.
You can change the direction of this distribution on an existing array using the redistribute
function with a different codistributor object.

Construct an 8-by-16 codistributed array D of random values distributed by columns on four workers:

spmd
    D = rand(8,16,codistributor());
    size(getLocalPart(D))
end

returns on each worker:

8     4

Create a new codistributed array distributed by rows from an existing one already distributed by
columns:

spmd
    X = redistribute(D, codistributor1d(1));
    size(getLocalPart(X))
end

returns on each worker:

2    16

Restoring the Full Array
You can restore a codistributed array to its undistributed form using the gather function. gather
takes the segments of an array that reside on different workers and combines them into a replicated
array on all workers, or into a single array on one worker.

Distribute a 4-by-10 array to four workers along the second dimension:

spmd,  A = [11:20; 21:30; 31:40; 41:50],  end
A =
    11    12    13    14    15    16    17    18    19    20
    21    22    23    24    25    26    27    28    29    30
    31    32    33    34    35    36    37    38    39    40
    41    42    43    44    45    46    47    48    49    50

spmd,  D = codistributed(A),  end

      WORKER 1        WORKER 2      WORKER 3     WORKER 4
    11   12   13  | 14   15   16  |  17   18  |  19    20
    21   22   23  | 24   25   26  |  27   28  |  29    30
    31   32   33  | 34   35   36  |  37   38  |  39    40
    41   42   43  | 44   45   46  |  47   48  |  49    50
                  |               |           |
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spmd,  size(getLocalPart(D)),  end
Lab 1: 
    4     3
Lab 2: 
    4     3
Lab 3: 
    4     2
Lab 4: 
    4     2

Restore the undistributed segments to the full array form by gathering the segments:

spmd,  X = gather(D),  end
X =
    11    12    13    14    15    16    17    18    19    20
    21    22    23    24    25    26    27    28    29    30
    31    32    33    34    35    36    37    38    39    40
    41    42    43    44    45    46    47    48    49    50

spmd,  size(X),  end
    4    10

Indexing into a Codistributed Array
While indexing into a nondistributed array is fairly straightforward, codistributed arrays require
additional considerations. Each dimension of a nondistributed array is indexed within a range of 1 to
the final subscript, which is represented in MATLAB by the end keyword. The length of any
dimension can be easily determined using either the size or length function.

With codistributed arrays, these values are not so easily obtained. For example, the second segment
of an array (that which resides in the workspace of worker 2) has a starting index that depends on the
array distribution. For a 200-by-1000 array with a default distribution by columns over four workers,
the starting index on worker 2 is 251. For a 1000-by-200 array also distributed by columns, that same
index would be 51. As for the ending index, this is not given by using the end keyword, as end in this
case refers to the end of the entire array; that is, the last subscript of the final segment. The length of
each segment is also not given by using the length or size functions, as they only return the length
of the entire array.

The MATLAB colon operator and end keyword are two of the basic tools for indexing into
nondistributed arrays. For codistributed arrays, MATLAB provides a version of the colon operator,
called codistributed.colon. This actually is a function, not a symbolic operator like colon.

Note When using arrays to index into codistributed arrays, you can use only replicated or
codistributed arrays for indexing. The toolbox does not check to ensure that the index is replicated,
as that would require global communications. Therefore, the use of unsupported variants (such as
labindex) to index into codistributed arrays might create unexpected results.

Example: Find a Particular Element in a Codistributed Array

Suppose you have a row vector of 1 million elements, distributed among several workers, and you
want to locate its element number 225,000. That is, you want to know what worker contains this
element, and in what position in the local part of the vector on that worker. The globalIndices
function provides a correlation between the local and global indexing of the codistributed array.
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D = rand(1,1e6,'distributed'); %Distributed by columns
spmd
    globalInd = globalIndices(D,2);
    pos = find(globalInd == 225e3);
    if ~isempty(pos)
      fprintf(...
      'Element is in position %d on worker %d.\n', pos, labindex);
    end
end

If you run this code on a pool of four workers you get this result:

Lab 1: 
  Element is in position 225000 on worker 1.

If you run this code on a pool of five workers you get this result:

Lab 2: 
  Element is in position 25000 on worker 2.

Notice if you use a pool of a different size, the element ends up in a different location on a different
worker, but the same code can be used to locate the element.

2-Dimensional Distribution
As an alternative to distributing by a single dimension of rows or columns, you can distribute a matrix
by blocks using '2dbc' or two-dimensional block-cyclic distribution. Instead of segments that
comprise a number of complete rows or columns of the matrix, the segments of the codistributed
array are 2-dimensional square blocks.

For example, consider a simple 8-by-8 matrix with ascending element values. You can create this
array in an spmd statement or communicating job.

spmd
    A = reshape(1:64, 8, 8)
end

The result is the replicated array:

     1     9    17    25    33    41    49    57

     2    10    18    26    34    42    50    58

     3    11    19    27    35    43    51    59

     4    12    20    28    36    44    52    60

     5    13    21    29    37    45    53    61

     6    14    22    30    38    46    54    62

     7    15    23    31    39    47    55    63

     8    16    24    32    40    48    56    64

Suppose you want to distribute this array among four workers, with a 4-by-4 block as the local part
on each worker. In this case, the lab grid is a 2-by-2 arrangement of the workers, and the block size is
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a square of four elements on a side (i.e., each block is a 4-by-4 square). With this information, you can
define the codistributor object:

spmd
    DIST = codistributor2dbc([2 2], 4);
end

Now you can use this codistributor object to distribute the original matrix:

spmd
    AA = codistributed(A, DIST)
end

This distributes the array among the workers according to this scheme:

If the lab grid does not perfectly overlay the dimensions of the codistributed array, you can still use
'2dbc' distribution, which is block cyclic. In this case, you can imagine the lab grid being repeatedly
overlaid in both dimensions until all the original matrix elements are included.

Using the same original 8-by-8 matrix and 2-by-2 lab grid, consider a block size of 3 instead of 4, so
that 3-by-3 square blocks are distributed among the workers. The code looks like this:

spmd
    DIST = codistributor2dbc([2 2], 3)
    AA = codistributed(A, DIST)
end

The first “row” of the lab grid is distributed to worker 1 and worker 2, but that contains only six of
the eight columns of the original matrix. Therefore, the next two columns are distributed to worker 1.
This process continues until all columns in the first rows are distributed. Then a similar process
applies to the rows as you proceed down the matrix, as shown in the following distribution scheme:
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The diagram above shows a scheme that requires four overlays of the lab grid to accommodate the
entire original matrix. The following code shows the resulting distribution of data to each of the
workers.

spmd
    getLocalPart(AA)
end

Lab 1: 
  
  ans =
  
       1     9    17    49    57
       2    10    18    50    58
       3    11    19    51    59
       7    15    23    55    63
       8    16    24    56    64
  
Lab 2: 
  
  ans =
  
      25    33    41
      26    34    42
      27    35    43
      31    39    47
      32    40    48
  
Lab 3: 
  
  ans =
  
       4    12    20    52    60
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       5    13    21    53    61
       6    14    22    54    62
  
Lab 4: 
  
  ans =
  
      28    36    44
      29    37    45
      30    38    46

The following points are worth noting:

• '2dbc' distribution might not offer any performance enhancement unless the block size is at least
a few dozen. The default block size is 64.

• The lab grid should be as close to a square as possible.
• Not all functions that are enhanced to work on '1d' codistributed arrays work on '2dbc'

codistributed arrays.
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Looping Over a Distributed Range (for-drange)
In this section...
“Parallelizing a for-Loop” on page 4-16
“Codistributed Arrays in a for-drange Loop” on page 4-17

Note Using a for-loop over a distributed range (drange) is intended for explicit indexing of the
distributed dimension of codistributed arrays (such as inside an spmd statement or a communicating
job). For most applications involving parallel for-loops you should first try using parfor loops. See
“Parallel for-Loops (parfor)”.

Parallelizing a for-Loop
In some occasions you already have a coarse-grained application to perform, i.e. an application for
which the run time is significantly greater than the communication time needed to start and stop the
program. If you do not want to bother with the overhead of defining jobs and tasks, you can take
advantage of the ease-of-use that spmd provides. Where an existing program might take hours or
days to process all its independent data sets, you can shorten that time by distributing these
independent computations over your cluster.

For example, suppose you have the following serial code:

results = zeros(1, numDataSets); 
for i = 1:numDataSets
    load(['\\central\myData\dataSet' int2str(i) '.mat'])
    results(i) = processDataSet(i);
 end 
plot(1:numDataSets, results);
save \\central\myResults\today.mat results

The following changes make this code operate in parallel, either interactively in spmd or in a
communicating job:

results = zeros(1, numDataSets, codistributor()); 
for i = drange(1:numDataSets)
    load(['\\central\myData\dataSet' int2str(i) '.mat'])
    results(i) = processDataSet(i); 
end 
res = gather(results, 1); 
if labindex == 1
    plot(1:numDataSets, res);
    print -dtiff -r300 fig.tiff;
    save \\central\myResults\today.mat res
end

Note that the length of the for iteration and the length of the codistributed array results need to
match in order to index into results within a for drange loop. This way, no communication is
required between the workers. If results was simply a replicated array, as it would have been when
running the original code in parallel, each worker would have assigned into its part of results,
leaving the remaining parts of results 0. At the end, results would have been a variant, and
without explicitly calling labSend and labReceive or gcat, there would be no way to get the total
results back to one (or all) workers.
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When using the load function, you need to be careful that the data files are accessible to all workers
if necessary. The best practice is to use explicit paths to files on a shared file system.

Correspondingly, when using the save function, you should be careful to only have one worker save
to a particular file (on a shared file system) at a time. Thus, wrapping the code in if labindex ==
1 is recommended.

Because results is distributed across the workers, this example uses gather to collect the data
onto worker 1.

A worker cannot plot a visible figure, so the print function creates a viewable file of the plot.

Codistributed Arrays in a for-drange Loop
When a for-loop over a distributed range is executed in a communicating job, each worker performs
its portion of the loop, so that the workers are all working simultaneously. Because of this, no
communication is allowed between the workers while executing a for-drange loop. In particular, a
worker has access only to its partition of a codistributed array. Any calculations in such a loop that
require a worker to access portions of a codistributed array from another worker will generate an
error.

To illustrate this characteristic, you can try the following example, in which one for loop works, but
the other does not.

With spmd, create two codistributed arrays, one an identity matrix, the other set to zeros, distributed
across four workers.

D = eye(8, 8, codistributor())
E = zeros(8, 8, codistributor())

By default, these arrays are distributed by columns; that is, each of the four workers contains two
columns of each array. If you use these arrays in a for-drange loop, any calculations must be self-
contained within each worker. In other words, you can only perform calculations that are limited
within each worker to the two columns of the arrays that the workers contain.

For example, suppose you want to set each column of array E to some multiple of the corresponding
column of array D:

for j = drange(1:size(D,2)); E(:,j) = j*D(:,j); end

This statement sets the j-th column of E to j times the j-th column of D. In effect, while D is an
identity matrix with 1s down the main diagonal, E has the sequence 1, 2, 3, etc., down its main
diagonal.

This works because each worker has access to the entire column of D and the entire column of E
necessary to perform the calculation, as each worker works independently and simultaneously on two
of the eight columns.

Suppose, however, that you attempt to set the values of the columns of E according to different
columns of D:

for j = drange(1:size(D,2)); E(:,j) = j*D(:,j+1); end
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This method fails, because when j is 2, you are trying to set the second column of E using the third
column of D. These columns are stored in different workers, so an error occurs, indicating that
communication between the workers is not allowed.

Restrictions

To use for-drange on a codistributed array, the following conditions must exist:

• The codistributed array uses a 1-dimensional distribution scheme (not 2dbc).
• The distribution complies with the default partition scheme.
• The variable over which the for-drange loop is indexing provides the array subscript for the

distribution dimension.
• All other subscripts can be chosen freely (and can be taken from for-loops over the full range of

each dimension).

To loop over all elements in the array, you can use for-drange on the dimension of distribution, and
regular for-loops on all other dimensions. The following example executes in an spmd statement
running on a parallel pool of 4 workers:

spmd
  PP = zeros(6,8,12,'codistributed');
  RR = rand(6,8,12,codistributor())
  % Default distribution: 
  %   by third dimension, evenly across 4 workers.

  for ii = 1:6
    for jj = 1:8
      for kk = drange(1:12)
        PP(ii,jj,kk) = RR(ii,jj,kk) + labindex;
      end
    end
  end
end

To view the contents of the array, type:

PP
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Run MATLAB Functions with Distributed Arrays
Hundreds of functions in MATLAB and other toolboxes are enhanced so that they operate on
distributed arrays.

D = distributed(gallery('lehmer',n));
e = eig(D);

If any of the input arguments to these distributed-enabled functions is a distributed array, their
output arrays are distributed, unless returning MATLAB data is more appropriate (for example,
numel).

Distributed arrays are well suited for large mathematical computations, such as large problems of
linear algebra. You can also use distributed arrays for big data processing. For more information on
distributing arrays, see “Distributing Arrays to Parallel Workers” on page 3-10.

Check Distributed Array Support in Functions
If a MATLAB function has distributed array support, you can consult additional distributed array
usage information on its function page. See Distributed Arrays in the Extended Capabilities
section at the end of the function page.

Tip For a filtered list of all MATLAB functions that support distributed arrays, see Function List
(Distributed Arrays).

You can browse functions that support distributed arrays from all MathWorks products at the
following link: All Functions List (Distributed Arrays). Alternatively, you can filter by product. On the
Help bar, click Functions. In the function list, browse the left pane to select a product, for example,
MATLAB. At the bottom of the left pane, select Distributed Arrays. If you select a product that does
not have distributed-enabled functions, then the Distributed Arrays filter is not available.

For information about updates to individual distributed-enabled functions, see the release notes.

To check support for sparse distributed arrays, consult the following section.

Support for Sparse Distributed Arrays
The following list shows functions that can help you work with sparse distributed arrays. In addition
to this list, most element-wise functions in MATLAB also work for distributed arrays.

bandwidth
bicg
bicgstab
bicgstabl
cat
cgs
ctranspose(')
cummax
cummin
cumprod

cumsum
diag
diff
find
flip
fliplr
flipud
gmres
horzcat([])
isbanded

isdiag
istril
istriu
ldivide(.\)
lsqr
minus(-)
mldivide(\)
mrdivide(/)
mtimes(*)
normest

pcg
power(.^)
plus(+)
qmr
rdivide(./)
rot90
sort
sortrows
sparse
spfun

spones
subsasgn
subsref
svds
tfqmr
transpose(.')
tril
triu
uminus(-)
uplus(+)

vertcat([;])
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Programming Overview

This chapter provides information you need for programming with Parallel Computing Toolbox
software. Further details of evaluating functions in a cluster, programming independent jobs, and
programming communicating jobs are covered in later chapters. This chapter describes features
common to programming all kinds of jobs. The sections are as follows.

• “How Parallel Computing Products Run a Job” on page 5-2
• “Program a Job on a Local Cluster” on page 5-8
• “Specify Your Parallel Preferences” on page 5-9
• “Discover Clusters and Use Cluster Profiles” on page 5-11
• “Apply Callbacks to MATLAB Job Scheduler Jobs and Tasks” on page 5-21
• “Job Monitor” on page 5-24
• “Programming Tips” on page 5-26
• “Control Random Number Streams on Workers” on page 5-29
• “Profiling Parallel Code” on page 5-32
• “Troubleshooting and Debugging” on page 5-42
• “Big Data Workflow Using Tall Arrays and Datastores” on page 5-46
• “Use Tall Arrays on a Parallel Pool” on page 5-48
• “Use Tall Arrays on a Spark Enabled Hadoop Cluster” on page 5-51
• “Run mapreduce on a Parallel Pool” on page 5-54
• “Run mapreduce on a Hadoop Cluster” on page 5-57
• “Partition a Datastore in Parallel” on page 5-60
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How Parallel Computing Products Run a Job
In this section...
“Overview” on page 5-2
“Toolbox and Server Components” on page 5-3
“Life Cycle of a Job” on page 5-6

Overview
Parallel Computing Toolbox and MATLAB Parallel Server software let you solve computationally and
data-intensive problems using MATLAB and Simulink on multicore and multiprocessor computers.
Parallel processing constructs such as parallel for-loops and code blocks, distributed arrays, parallel
numerical algorithms, and message-passing functions let you implement task-parallel and data-
parallel algorithms at a high level in MATLAB without programming for specific hardware and
network architectures.

A job is some large operation that you need to perform in your MATLAB session. A job is broken down
into segments called tasks. You decide how best to divide your job into tasks. You could divide your
job into identical tasks, but tasks do not have to be identical.

The MATLAB session in which the job and its tasks are defined is called the client session. Often, this
is on the machine where you program MATLAB. The client uses Parallel Computing Toolbox software
to perform the definition of jobs and tasks and to run them on a cluster local to your machine.
MATLAB Parallel Server software is the product that performs the execution of your job on a cluster
of machines.

The MATLAB Job Scheduler is the process that coordinates the execution of jobs and the evaluation of
their tasks. The MATLAB Job Scheduler distributes the tasks for evaluation to the server's individual
MATLAB sessions called workers. Use of the MATLAB Job Scheduler to access a cluster is optional;
the distribution of tasks to cluster workers can also be performed by a third-party scheduler, such as
Microsoft® Windows® HPC Server (including CCS) or Platform LSF®.

Basic Parallel Computing Setup
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Toolbox and Server Components
• “MATLAB Job Scheduler, Workers, and Clients” on page 5-3
• “Local Cluster” on page 5-4
• “Third-Party Schedulers” on page 5-4
• “Components on Mixed Platforms or Heterogeneous Clusters” on page 5-5
• “mjs Service” on page 5-5
• “Components Represented in the Client” on page 5-5

MATLAB Job Scheduler, Workers, and Clients

The MATLAB Job Scheduler can be run on any machine on the network. The MATLAB Job Scheduler
runs jobs in the order in which they are submitted, unless any jobs in its queue are promoted,
demoted, canceled, or deleted.

Each worker is given a task from the running job by the MATLAB Job Scheduler, executes the task,
returns the result to the MATLAB Job Scheduler, and then is given another task. When all tasks for a
running job have been assigned to workers, the MATLAB Job Scheduler starts running the next job on
the next available worker.

A MATLAB Parallel Server software setup usually includes many workers that can all execute tasks
simultaneously, speeding up execution of large MATLAB jobs. It is generally not important which
worker executes a specific task. In an independent job, the workers evaluate tasks one at a time as
available, perhaps simultaneously, perhaps not, returning the results to the MATLAB Job Scheduler.
In a communicating job, the workers evaluate tasks simultaneously. The MATLAB Job Scheduler then
returns the results of all the tasks in the job to the client session.

Note For testing your application locally or other purposes, you can configure a single computer as
client, worker, and MATLAB Job Scheduler host. You can also have more than one worker session or
more than one MATLAB Job Scheduler session on a machine.

Interactions of Parallel Computing Sessions

A large network might include several MATLAB Job Schedulers as well as several client sessions. Any
client session can create, run, and access jobs on any MATLAB Job Scheduler, but a worker session is
registered with and dedicated to only one MATLAB Job Scheduler at a time. The following figure
shows a configuration with multiple MATLAB Job Schedulers.
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Cluster with Multiple Clients and MATLAB Job Schedulers

Local Cluster

A feature of Parallel Computing Toolbox software is the ability to run a local cluster of workers on the
client machine, so that you can run jobs without requiring a remote cluster or MATLAB Parallel
Server software. In this case, all the processing required for the client, scheduling, and task
evaluation is performed on the same computer. This gives you the opportunity to develop, test, and
debug your parallel applications before running them on your network cluster.

Third-Party Schedulers

As an alternative to using the MATLAB Job Scheduler, you can use a third-party scheduler. This could
be a Microsoft Windows HPC Server (including CCS), Platform LSF scheduler, PBS Pro® scheduler,
TORQUE scheduler, or a generic scheduler.
Choosing Between a Third-Party Scheduler and a MATLAB Job Scheduler

You should consider the following when deciding to use a third-party scheduler or the MATLAB Job
Scheduler for distributing your tasks:

• Does your cluster already have a scheduler?

If you already have a scheduler, you may be required to use it as a means of controlling access to
the cluster. Your existing scheduler might be just as easy to use as a MATLAB Job Scheduler, so
there might be no need for the extra administration involved.

• Is the handling of parallel computing jobs the only cluster scheduling management you need?

The MATLAB Job Scheduler is designed specifically for MathWorks parallel computing
applications. If other scheduling tasks are not needed, a third-party scheduler might not offer any
advantages.

• Is there a file sharing configuration on your cluster already?

The MATLAB Job Scheduler can handle all file and data sharing necessary for your parallel
computing applications. This might be helpful in configurations where shared access is limited.

• Are you interested in batch mode or managed interactive processing?

When you use a MATLAB Job Scheduler, worker processes usually remain running at all times,
dedicated to their MATLAB Job Scheduler. With a third-party scheduler, workers are run as
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applications that are started for the evaluation of tasks, and stopped when their tasks are
complete. If tasks are small or take little time, starting a worker for each one might involve too
much overhead time.

• Are there security concerns?

Your own scheduler might be configured to accommodate your particular security requirements.
• How many nodes are on your cluster?

If you have a large cluster, you probably already have a scheduler. Consult your MathWorks
representative if you have questions about cluster size and the MATLAB Job Scheduler.

• Who administers your cluster?

The person administering your cluster might have a preference for how jobs are scheduled.
• Do you need to monitor your job's progress or access intermediate data?

A job run by the MATLAB Job Scheduler supports events and callbacks, so that particular
functions can run as each job and task progresses from one state to another.

Components on Mixed Platforms or Heterogeneous Clusters

Parallel Computing Toolbox software and MATLAB Parallel Server software are supported on
Windows, UNIX, and Macintosh operating systems. Mixed platforms are supported, so that the
clients, MATLAB Job Scheduler, and workers do not have to be on the same platform. Other
limitations are described at System Requirements.

In a mixed-platform environment, system administrators should be sure to follow the proper
installation instructions for the local machine on which you are installing the software.

mjs Service

If you are using the MATLAB Job Scheduler, every machine that hosts a worker or MATLAB Job
Scheduler session must also run the mjs service.

The mjs service controls the worker and MATLAB Job Scheduler sessions and recovers them when
their host machines crash. If a worker or MATLAB Job Scheduler machine crashes, when the mjs
service starts up again (usually configured to start at machine boot time), it automatically restarts the
MATLAB Job Scheduler and worker sessions to resume their sessions from before the system crash.
More information about the mjs service is available in the MATLAB Parallel Server documentation.

Components Represented in the Client

A client session communicates with the MATLAB Job Scheduler by calling methods and configuring
properties of an MATLAB Job Scheduler cluster object. Though not often necessary, the client session
can also access information about a worker session through a worker object.

When you create a job in the client session, the job actually exists in the MATLAB Job Scheduler job
storage location. The client session has access to the job through a job object. Likewise, tasks that
you define for a job in the client session exist in the MATLAB Job Scheduler data location, and you
access them through task objects.
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Life Cycle of a Job
When you create and run a job, it progresses through a number of stages. Each stage of a job is
reflected in the value of the job object’s State property, which can be pending, queued, running,
or finished. Each of these stages is briefly described in this section.

The figure below illustrates the stages in the life cycle of a job. In the MATLAB Job Scheduler (or
other scheduler), the jobs are shown categorized by their state. Some of the functions you use for
managing a job are createJob, submit, and fetchOutputs.

Stages of a Job

The following table describes each stage in the life cycle of a job.

Job Stage Description
Pending You create a job on the scheduler with the createJob function in your

client session of Parallel Computing Toolbox software. The job's first state
is pending. This is when you define the job by adding tasks to it.

Queued When you execute the submit function on a job, the MATLAB Job
Scheduler or scheduler places the job in the queue, and the job's state is
queued. The scheduler executes jobs in the queue in the sequence in
which they are submitted, all jobs moving up the queue as the jobs before
them are finished. You can change the sequence of the jobs in the queue
with the promote and demote functions.

Running When a job reaches the top of the queue, the scheduler distributes the
job's tasks to worker sessions for evaluation. The job’s state is now
running. If more workers are available than are required for a job's tasks,
the scheduler begins executing the next job. In this way, there can be more
than one job running at a time.

Finished When all of a job’s tasks have been evaluated, the job is moved to the
finished state. At this time, you can retrieve the results from all the tasks
in the job with the function fetchOutputs.

Failed When using a third-party scheduler, a job might fail if the scheduler
encounters an error when attempting to execute its commands or access
necessary files.
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Job Stage Description
Deleted When a job’s data has been removed from its data location or from the

MATLAB Job Scheduler with the delete function, the state of the job in
the client is deleted. This state is available only as long as the job object
remains in the client.

Note that when a job is finished, its data remains in the MATLAB Job Scheduler’s
JobStorageLocation folder, even if you clear all the objects from the client session. The MATLAB
Job Scheduler or scheduler keeps all the jobs it has executed, until you restart the MATLAB Job
Scheduler in a clean state. Therefore, you can retrieve information from a job later or in another
client session, so long as the MATLAB Job Scheduler has not been restarted with the -clean option.

You can permanently remove completed jobs from the MATLAB Job Scheduler or scheduler's storage
location using the Job Monitor GUI or the delete function.
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Program a Job on a Local Cluster
In some situations, you might need to define the individual tasks of a job, perhaps because they might
evaluate different functions or have uniquely structured arguments. To program a job like this, the
typical Parallel Computing Toolbox client session includes the steps shown in the following example.

This example illustrates the basic steps in creating and running a job that contains a few simple
tasks. Each task evaluates the sum function for an input array.

1 Identify a cluster. Use parallel.defaultClusterProfile to indicate that you are using the
local cluster; and use parcluster to create the object c to represent this cluster. (For more
information, see “Create a Cluster Object” on page 6-3.)

parallel.defaultClusterProfile('local');
c = parcluster();

2 Create a job. Create job j on the cluster. (For more information, see “Create a Job” on page 6-
3.)

j = createJob(c)
3 Create three tasks within the job j. Each task evaluates the sum of the array that is passed as an

input argument. (For more information, see “Create Tasks” on page 6-4.)

createTask(j, @sum, 1, {[1 1]});
createTask(j, @sum, 1, {[2 2]});
createTask(j, @sum, 1, {[3 3]});

4 Submit the job to the queue for evaluation. The scheduler then distributes the job’s tasks to
MATLAB workers that are available for evaluating. The local cluster might now start MATLAB
worker sessions. (For more information, see “Submit a Job to the Cluster” on page 6-5.)

submit(j);
5 Wait for the job to complete, then get the results from all the tasks of the job. (For more

information, see “Fetch the Job Results” on page 6-5.)

wait(j)
results = fetchOutputs(j)
results = 
    [2]
    [4]
    [6]

6 Delete the job. When you have the results, you can permanently remove the job from the
scheduler's storage location.

delete(j)
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Specify Your Parallel Preferences
You can access your parallel preferences in any of the following ways:

• On the Home tab in the Environment section, select Parallel > Parallel Preferences
• Select the desktop pool indicator icon, and select Parallel Preferences.
• In the command window, type preferences.

preferences

In the navigation tree of the Preferences dialog box, select Parallel Computing Toolbox.

You can control your parallel preference settings as follows:

• Default Cluster — Choose the cluster you want to use. The default cluster is local. For more
information, see “Add and Modify Cluster Profiles” on page 5-14.

• Preferred number of workers — Specify the number of workers in your parallel pool. The actual
pool size is limited by licensing, cluster size, and cluster profile settings on page 5-14. See “Pool
Size and Cluster Selection” on page 2-59. For the local profile, do not choose a preferred number
of workers larger than 512. See also “Add and Modify Cluster Profiles” on page 5-14. Check your
access to cloud computing from the Parallel > Discover Clusters menu.

• Automatically create a parallel pool — Select this option to start a pool automatically (if a pool
does not yet exist). Many functions can automatically start a parallel pool, including:

• parfor
• spmd
• distributed
• Composite
• parfeval
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• parfevalOnAll
• gcp
• mapreduce
• mapreducer

If you have selected Automatically create a parallel pool, you do not need to open a pool
manually using the parpool function. If a pool automatically opens, you can still access the pool
object with gcp.

• Shut down and delete a parallel pool — To shut down a parallel pool automatically if the pool
has been idle for the specified amount of time, use the IdleTimeout setting. If you use the pool
(for example, using parfor or parfeval), the timeout counter is reset. When the timeout is
about to expire, a tooltip on the desktop pool indicator warns you and allows you to reset the
timer. Note that modifying this setting changes the IdleTimeout of any already started pool.

See Also

Related Examples
• “Run MATLAB Functions with Automatic Parallel Support” on page 1-20
• “Scale up from Desktop to Cluster”

More About
• “Decide When to Use parfor” on page 2-2
• “Scale Up parfor-Loops to Cluster and Cloud” on page 2-21
• “Add and Modify Cluster Profiles” on page 5-14
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Discover Clusters and Use Cluster Profiles

In this section...
“Create and Manage Cluster Profiles” on page 5-11
“Discover Clusters” on page 5-12
“Create Cloud Cluster” on page 5-14
“Add and Modify Cluster Profiles” on page 5-14
“Import and Export Cluster Profiles” on page 5-18
“Edit Number of Workers and Cluster Settings” on page 5-19
“Use Your Cluster from MATLAB” on page 5-19

Parallel Computing Toolbox comes pre-configured with the cluster profile local for running parallel
code on your local desktop machine.

Control parallel behavior using the Parallel menu on the MATLAB Home tab.

You can use the Parallel menu to:

• Discover other clusters running on your network or on Amazon EC2. Click Parallel > Discover
Clusters. For more information, see “Discover Clusters” on page 5-12.

• Create and manage cluster profiles using the Cluster Profile Manager. Click Parallel > Create
and Manage Clusters. For more information, see “Create and Manage Cluster Profiles” on page
5-11.

Create and Manage Cluster Profiles
Cluster profiles let you define certain properties for your cluster, then have these properties applied
when you create cluster, job, and task objects in the MATLAB client. Some of the functions that
support the use of cluster profiles are

• batch
• parpool
• parcluster

Manage cluster profiles using the Cluster Profile Manager. To open the Cluster Profile Manager, on
the Home tab, in the Environment section, select Parallel > Create and Manage Clusters.
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You can use the Cluster Profile Manager to:

• Discover other clusters running on your network or on Amazon® AWS®. For more information, see
“Discover Clusters” on page 5-12.

• Create a cluster in the cloud, such as Amazon AWS. For more information, see “Create Cloud
Cluster” on page 5-14.

• Add cluster profiles and modify their properties. For more information, see “Add and Modify
Cluster Profiles” on page 5-14.

• Import and export cluster profiles. For more information, see “Import and Export Cluster Profiles”
on page 5-18.

• Specify profile properties. For more information, see “Edit Number of Workers and Cluster
Settings” on page 5-19.

• Validate that a cluster profile is ready for use in MATLAB.

Discover Clusters
You can let MATLAB discover clusters for you. Use either of the following techniques to discover
those clusters which are available for you to use:

• On the Home tab in the Environment section, select Parallel > Discover Clusters
• In the Cluster Profile Manager, select Discover Clusters
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This opens the Discover Clusters dialog box, where you can search for MATLAB Parallel Server
clusters:

If you select On your network, you see a new window. Select this option if your clusters use a
MATLAB Job Scheduler or Microsoft Windows HPC server. As clusters are discovered, they populate a
list for your selection. If you already have a profile for any of the listed clusters, those profile names
are included in the list. If you want to create a new profile for one of the discovered clusters, select
the name of the cluster you want to use, and select Next. The subsequent dialog box lets you choose
if you want to set the created profile as your default. This option is not supported in MATLAB Online.

If you select On Amazon EC2, you search for clusters running on Amazon EC2. To access these
clusters, you must provide your MathWorks Account login information.

Requirements for Cluster Discovery

Cluster discovery is supported only for MATLAB Job Schedulers, Microsoft Windows HPC Server, and
Amazon EC2 cloud clusters. If you need to integrate your scheduler with MATLAB Parallel Server, or
create a cluster profile for a different supported scheduler, see “Get Started with MATLAB Parallel
Server” (MATLAB Parallel Server). The following requirements apply to cluster discovery:

• MATLAB Job Scheduler — MATLAB Job Scheduler clusters support two different means of
discovery:

• Multicast: The discover clusters functionality uses the multicast networking protocol from the
client to search for head nodes where a MATLAB Job Scheduler is running. This requires that
the multicast networking protocol is enabled and working on the network that connects the
MATLAB Job Scheduler head nodes (where the schedulers are running) and the client
machines. This form of discovery might be limited to the client local subnet, and therefore not
always able to discover a MATLAB Job Scheduler elsewhere in your network.

• DNS SRV: An alternative discovery technique is to search for clusters by DNS service records.

The Domain Name System (DNS) is a standard for identifying host names with IP addresses,
either on the Internet or in a private network. Using DNS allows discovery of MATLAB Job
Scheduler clusters by identifying specific hosts rather than broadcasting across your network.
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A DNS service (SRV) record defines the location of hosts and ports of services, such as those
related to the clusters you want to discover. Your system administrator creates DNS SRV
records in your organization’s DNS infrastructure. For a description of the required record,
and validation information, see “DNS SRV Record” (MATLAB Parallel Server).

• HPC Server — The discover clusters functionality uses Active Directory Domain Services to
discover head nodes. HPC Server head nodes are added to the Active Directory during installation
of the HPC Server software.

• Amazon EC2 — The discover clusters functionality requires a working network connection
between the client and the Cloud Center web services running in mathworks.com.

Create Cloud Cluster
You can create clusters in cloud services, such as Amazon AWS, directly from the Cluster Profile
Manager. In the Cluster Profile Manager, select Create Cloud Cluster. Sign up with your MathWorks
Account and complete the required steps. Then, you can create a cloud cluster and configure
parameters, such as the number of machines or the number of workers per machine. For more
information on each of the available parameters, see Create a Cloud Cluster. When you complete all
the steps, MATLAB creates a new cluster profile for you. You can modify its properties from the
Cluster Profile Manager.

To manage your licenses, test cloud connectivity, or manage your cloud clusters in MathWorks Cloud
Center, go to Cluster Profile Manager toolstrip > CLOUD section.

Add and Modify Cluster Profiles
With the Cluster Profile Manager, you can add a cluster profile for a MATLAB job scheduler or a third-
party scheduler. If you need to set up your cluster for use with MATLAB, see “Get Started with
MATLAB Parallel Server” (MATLAB Parallel Server).

The following example provides instructions on how to add and modify profiles using the Cluster
Profile Manager.

Suppose you want to create a profile to set several properties for jobs to run in a MATLAB Job
Scheduler cluster. The following example illustrates a possible workflow, where you create two
profiles differentiated only by the number of workers they use.

1 In the Cluster Profile Manager, select Add Cluster Profile > MATLAB Job Scheduler. This
specifies that you want a new profile for a MATLAB Job Scheduler cluster.
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This creates and displays a new profile, called MJSProfile1.
2 Double-click the new profile name in the listing, and modify the profile name to be

MyMJSProfile1.
3 Select Edit in the tool strip so that you can set your profile property values.

In the Description field, enter the text MJS with 4 workers, as shown in the following figure.
Enter the host name for the machine on which the MATLAB Job Scheduler is running, and the
name of the MATLAB Job Scheduler. If you are entering information for an actual MATLAB Job
Scheduler already running on your network, enter the actual names. If you are unsure about the
MATLAB Job Scheduler names and locations on your network, ask your system administrator for
help.
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Note If the MATLAB Job Scheduler is using a nondefault BASE_PORT setting as defined in the
mjs_def file, the Host property in the cluster profile must be appended with this BASE_PORT
number. For example, MJS-Host:40000.

4 Scroll down to the Workers section, and for the Range of number of workers, enter the two-
element vector [4 4]. This specifies that jobs using this profile require at least four workers and
no more than four workers. Therefore, a job using this profile runs on exactly four workers, even
if it has to wait until four workers are available before starting.
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You might want to edit other properties depending on your particular network and cluster
situation.

5 Select Done to save the profile settings.

To create a similar profile with just a few differences, you can duplicate an existing profile and modify
only the parts you need to change, as follows:

1 In the Cluster Profile Manager, right-click the profile name MyMJSProfile1 in the list and select
Duplicate.

This creates a duplicate profile with a name based on the original profile name appended with
_Copy.

2 Double-click the new profile name and edit its name to be MyMJSprofile2.
3 Select Edit to allow you to change the profile property values.
4 Edit the description field to change its text to MJS with any workers.
5 Scroll down to the Workers section, and for the Range of number of workers, clear the [4 4]

and leave the field blank.
6 Select Done to save the profile settings and to close the properties editor.

You now have two profiles that differ only in the number of workers required for running a job.

When creating a job, you can apply either profile to that job as a way of specifying how many workers
it should run on.
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You can see examples of profiles for different kinds of supported schedulers in the MATLAB Parallel
Server installation instructions at “Configure Your Cluster” (MATLAB Parallel Server).

Import and Export Cluster Profiles
Cluster profiles are stored as part of your MATLAB preferences, so they are generally available on an
individual user basis. To make a cluster profile available to someone else, you can export it to a
separate .mlsettings file. In this way, a repository of profiles can be created so that all users of a
computing cluster can share common profiles.

To export a cluster profile:

1 In the Cluster Profile Manager, select (highlight) the profile you want to export.
2 Select Export > Export. (Alternatively, you can right-click the profile in the listing and select

Export.)

If you want to export all your profiles to a single file, select Export > Export All
3 In the Export profiles to file dialog box, specify a location and name for the file. The default file

name is the same as the name of the profile it contains, with a .mlsettings extension
appended; you can alter the names if you want to.

Note that you cannot export profiles for Cloud Center personal clusters.

Profiles saved in this way can then be imported by other MATLAB users:

1 In the Cluster Profile Manager, select Import.
2 In the Import profiles from file dialog box, browse to find the .mlsettings file for the profile

you want to import. Select the file and select Open.

The imported profile appears in your Cluster Profile Manager list. Note that the list contains the
profile name, which is not necessarily the file name. If you already have a profile with the same
name as the one you are importing, the imported profile gets an extension added to its name so
you can distinguish it.

You can also export and import profiles programmatically with the parallel.exportProfile and
parallel.importProfile functions.

Export Profiles for MATLAB Compiler

You can use an exported profile with MATLAB Compiler and MATLAB Compiler SDK to identify
cluster setup information for running compiled applications on a cluster. For example, the
setmcruserdata function can use the exported profile file name to set the value for the key
ParallelProfile. For more information and examples of deploying parallel applications, see “Pass
Parallel Computing Toolbox Profile at Run Time” (MATLAB Compiler), and “Use Parallel Computing
Toolbox in Deployed Applications” (MATLAB Compiler SDK).

A compiled application has the same default profile and the same list of alternative profiles that the
compiling user had when the application was compiled. This means that in many cases the profile file
is not needed, as might be the case when using the local profile for local workers. If an exported file
is used, the first profile in the file becomes the default when imported. If any of the imported profiles
have the same name as any of the existing profiles, they are renamed during import (though their
names in the file remain unchanged).
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Edit Number of Workers and Cluster Settings
After you create a cluster profile, you can specify the number of workers and other profile properties:

• NumWorkers: the number of workers to start a pool. The actual pool size might be limited by
licensing, cluster size, and cluster profile settings. See “Pool Size and Cluster Selection” on page
2-59

• NumThreads: the number of computational threads to use on each worker. You can change
NumThreads, so that your workers can run in multithreaded mode and use all the cores on your
cluster. This allows you to increase the number of computational threads NumThreads on each
worker, without increasing the number of workers NumWorkers. If you have more cores available,
increase NumThreads to take full advantage of the built-in parallelism provided by the
multithreaded nature of many of the underlying MATLAB libraries. For details, see Run MATLAB
on multicore and multiprocessor machines .

Note Do not increase the number of threads across all workers on a machine to exceed the
number of physical cores. In other words, make sure that NumWorkers x NumThreads ≤ number
of physical cores on your machine. Otherwise you might have reduced performance.

Use Your Cluster from MATLAB
To run parallel language functions, such as parpool or batch, on a cluster, set the cluster profile as
default, or use cluster objects.

Specify Default Cluster

To set a cluster profile as the default, use one of the following ways:

• On the Home tab in the Environment section, select Parallel > Select a Default Cluster, and
from there, all your profiles are available. The default profile is indicated. You can select any
profile in the list as the default.

• The Cluster Profile Manager indicates which is the default profile. You can select any profile in the
list, then select Set as Default.

• You can get or set the default profile programmatically by using the
parallel.defaultClusterProfile function. The following sets of commands achieve the
same thing:

parallel.defaultClusterProfile('MyMJSProfile1')
parpool

or

parpool('MyMJSProfile1')

Specify Cluster Programmatically (parcluster)

The parcluster function creates a cluster object in your workspace according to the specified
profile. The profile identifies a particular cluster and applies property values. For example,

c = parcluster('MyMJSProfile1')

This command finds the cluster defined by the settings of the profile named MyMJSProfile1 and
sets property values on the cluster object based on settings in the profile. Use a cluster object in
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functions such as parpool or batch. By applying different profiles, you can alter your cluster
choices without changing your MATLAB application code.

See Also
batch | createJob | parallel.defaultClusterProfile | parallel.exportProfile |
parallel.importProfile | parcluster | parpool | setmcruserdata

Related Examples
• “Run Code on Parallel Pools” on page 2-56
• “Scale up from Desktop to Cluster”
• “Pass Parallel Computing Toolbox Profile at Run Time” (MATLAB Compiler)
• “Use Parallel Computing Toolbox in Deployed Applications” (MATLAB Compiler SDK)
• “Verify Network Communications for Cluster Discovery” (MATLAB Parallel Server)

More About
• “Get Started with MATLAB Parallel Server” (MATLAB Parallel Server)
• “Clusters and Clouds”

External Websites
• https://www.mathworks.com/help/cloudcenter/
• https://www.mathworks.com/licensecenter
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Apply Callbacks to MATLAB Job Scheduler Jobs and Tasks
The MATLAB Job Scheduler has the ability to trigger callbacks in the client session whenever jobs or
tasks in the MATLAB Job Scheduler cluster change to specific states.

Client objects representing jobs and tasks in a MATLAB Job Scheduler cluster include the following
properties:

Callback
Property

Object Cluster
Profile
Manage
r Field

Description

QueuedFcn Job only JobQueu
edFcn

Specifies the function to execute in the client when a job is
submitted to the MATLAB Job Scheduler queue

RunningFcn Job or
task

JobRunn
ingFcn

TaskRun
ningFcn

Specifies the function to execute in the client when a job or task
begins its execution

FinishedFc
n

Job or
task

JobFini
shedFcn

TaskFin
ishedFc
n

Specifies the function to execute in the client when a job or task
completes its execution

You can set each of these properties to any valid MATLAB callback value in the Cluster Profile
Manager, see the table and “Add and Modify Cluster Profiles” on page 5-14. The callback follows the
same behavior for Handle Graphics®, passing into the callback function the object (job or task) that
makes the call and an empty argument of event data.

These properties apply only in the client MATLAB session in which they are set. Later sessions that
access the same job or task objects do not inherit the settings from previous sessions. You can apply
the properties to existing jobs and tasks at the command-line, but the cluster profile settings apply
only at the time these objects are first created.

Note The callback properties are available only when using a MATLAB Job Scheduler cluster.

Example 5.1. Create Callbacks at the Command Line

This example shows how to create job and task callbacks at the client session command line.

Create and save a callback function clientTaskCompleted.m on the path of the MATLAB client,
with the following content:

function clientTaskCompleted(task,eventdata)
   disp(['Finished task: ' num2str(task.ID)])

Create a job and set its QueuedFcn, RunningFcn, and FinishedFcn properties, using a function
handle to an anonymous function that sends information to the display.
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c = parcluster('MyMJS');
j = createJob(c,'Name','Job_52a');
j.QueuedFcn = @(job,eventdata) disp([job.Name ' now ' job.State]);
j.RunningFcn = @(job,eventdata) disp([job.Name ' now ' job.State]);
j.FinishedFcn = @(job,eventdata) disp([job.Name ' now ' job.State]);

Create a task whose FinishedFcn is a function handle to the separate function.

createTask(j,@rand,1,{2,4}, ...
    'FinishedFcn',@clientTaskCompleted);

Run the job and note the output messages from both the job and task callbacks.

submit(j)

Job_52a now queued
Job_52a now running
Finished task: 1
Job_52a now finished

To use the same callbacks for any jobs and tasks on a given cluster, you should set these properties in
the cluster profile. For details on editing profiles in the profile manager, see “Discover Clusters and
Use Cluster Profiles” on page 5-11. These property settings apply to any jobs and tasks created using
a cluster derived from this profile. The sequence is important, and must occur in this order:

1 Set the callback property values for the profile in the profile manager.
2 Use the cluster profile to create a cluster object in MATLAB.
3 Use the cluster object to create jobs and then tasks.

Example 5.2. Set Callbacks in a Cluster Profile

This example shows how to set several job and task callback properties using the profile manager.

Edit your MATLAB Job Scheduler cluster profile in the profile manager so that you can set the
callback properties to the same values in the previous example. The saves profile looks like this:

Create and save a callback function clientTaskCompleted.m on the path of the MATLAB client,
with the following content. (If you created this function for the previous example, you can use that.)
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function clientTaskCompleted(task,eventdata)
   disp(['Finished task: ' num2str(task.ID)])

Create objects for the cluster, job, and task. Then submit the job. All the callback properties are set
from the profile when the objects are created.
c = parcluster('MyMJS');
j = createJob(c,'Name','Job_52a');
createTask(j,@rand,1,{2,4});

submit(j)

Job_52a now queued
Job_52a now running
Finished task: 1
Job_52a now finished

Tips

• You should avoid running code in your callback functions that might cause conflicts. For example,
if every task in a job has a callback that plots its results, there is no guarantee to the order in
which the tasks finish, so the plots might overwrite each other. Likewise, the FinishFcn callback
for a job might be triggered to start before the FinishFcn callbacks for all its tasks are complete.

• Submissions made with batch use applicable job and task callbacks. Parallel pools can trigger job
callbacks defined by their cluster profile.
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Job Monitor
In this section...
“Typical Use Cases” on page 5-24
“Manage Jobs Using the Job Monitor” on page 5-24
“Identify Task Errors Using the Job Monitor” on page 5-25

The Job Monitor displays the jobs in the queue for the scheduler determined by your selection of a
cluster profile. Open the Job Monitor from the MATLAB desktop on the Home tab in the
Environment section, by selecting Parallel > Monitor Jobs.

The job monitor lists all the jobs that exist for the cluster specified in the selected profile. You can
choose any one of your profiles (those available in your current session Cluster Profile Manager), and
whether to display jobs from all users or only your own jobs.

Typical Use Cases
The Job Monitor lets you accomplish many different goals pertaining to job tracking and queue
management. Using the Job Monitor, you can:

• Discover and monitor all jobs submitted by a particular user
• Determine the status of a job
• Determine the cause of errors in a job
• Delete old jobs you no longer need
• Create a job object in MATLAB for access to a particular job in the queue

Manage Jobs Using the Job Monitor
Using the Job Monitor you can manage the listed jobs for your cluster. Right-click on any job in the
list, and select any of the following options from the context menu. The available options depend on
the type of job.

• Cancel — Stops a running job and changes its state to 'finished'. If the job is pending or
queued, the state changes to 'finished' without its ever running. This is the same as the
command-line cancel function for the job.

• Delete — Deletes the job data and removes the job from the queue. This is the same as the
command-line delete function for the job. Also closes and deletes an interactive pool job.

• Show Details — This displays detailed information about the job in the Command Window.
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• Show Errors — This displays all the tasks that generated an error in that job, with their error
properties.

• Fetch Outputs — This collects all the task output arguments from the job into the client
workspace.

Identify Task Errors Using the Job Monitor
Because the Job Monitor indicates if a job had a run-time error, you can use it to identify the tasks
that generated the errors in that job. For example, the following script generates an error because it
attempts to perform a matrix inverse on a vector:

A = [2 4 6 8];
B = inv(A);

If you save this script in a file named invert_me.m, you can try to run the script as a batch job on
the default cluster:

batch('invert_me')

When updated after the job runs, the Job Monitor includes the job created by the batch command,
with an error icon ( ) for this job. Right-click the job in the list, and select Show Errors. For all the
tasks with an error in that job, the task information, including properties related to the error, display
in the MATLAB command window:
Task ID 1 from Job ID 2 Information
===================================

                     State : finished
                  Function : @parallel.internal.cluster.executeScript
                 StartTime : Tue Jun 28 11:46:28 EDT 2011
          Running Duration : 0 days 0h 0m 1s

- Task Result Properties

           ErrorIdentifier : MATLAB:square
              ErrorMessage : Matrix must be square.
               Error Stack : invert_me (line 2)
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Programming Tips
In this section...
“Program Development Guidelines” on page 5-26
“Current Working Directory of a MATLAB Worker” on page 5-27
“Writing to Files from Workers” on page 5-27
“Saving or Sending Objects” on page 5-27
“Using clear functions” on page 5-28
“Running Tasks That Call Simulink Software” on page 5-28
“Using the pause Function” on page 5-28
“Transmitting Large Amounts of Data” on page 5-28
“Interrupting a Job” on page 5-28
“Speeding Up a Job” on page 5-28

Program Development Guidelines
When writing code for Parallel Computing Toolbox software, you should advance one step at a time in
the complexity of your application. Verifying your program at each step prevents your having to
debug several potential problems simultaneously. If you run into any problems at any step along the
way, back up to the previous step and reverify your code.

The recommended programming practice for distributed or parallel computing applications is

1 Run code normally on your local machine. First verify all your functions so that as you
progress, you are not trying to debug the functions and the distribution at the same time. Run
your functions in a single instance of MATLAB software on your local computer. For programming
suggestions, see “Techniques to Improve Performance” (MATLAB).

2 Decide whether you need an independent or communicating job. If your application
involves large data sets on which you need simultaneous calculations performed, you might
benefit from a communicating job with distributed arrays. If your application involves looped or
repetitive calculations that can be performed independently of each other, an independent job
might be appropriate.

3 Modify your code for division. Decide how you want your code divided. For an independent
job, determine how best to divide it into tasks; for example, each iteration of a for-loop might
define one task. For a communicating job, determine how best to take advantage of parallel
processing; for example, a large array can be distributed across all your workers.

4 Use spmd to develop parallel functionality. Use spmd with a local pool to develop your
functions on several workers in parallel. As you progress and use spmd on the remote cluster,
that might be all you need to complete your work.

5 Run the independent or communicating job with a local scheduler. Create an independent
or communicating job, and run the job using the local scheduler with several local workers. This
verifies that your code is correctly set up for batch execution, and in the case of an independent
job, that its computations are properly divided into tasks.

6 Run the independent job on only one cluster node. Run your independent job with one task
to verify that remote distribution is working between your client and the cluster, and to verify
proper transfer of additional files and paths.
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7 Run the independent or communicating job on multiple cluster nodes. Scale up your job
to include as many tasks as you need for an independent job, or as many workers as you need for
a communicating job.

Note The client session of MATLAB must be running the Java® Virtual Machine (JVM™) to use
Parallel Computing Toolbox software. Do not start MATLAB with the -nojvm flag.

Current Working Directory of a MATLAB Worker
The current directory of a MATLAB worker at the beginning of its session is

CHECKPOINTBASE\HOSTNAME_WORKERNAME_mlworker_log\work

where CHECKPOINTBASE is defined in the mjs_def file, HOSTNAME is the name of the node on which
the worker is running, and WORKERNAME is the name of the MATLAB worker session.

For example, if the worker named worker22 is running on host nodeA52, and its CHECKPOINTBASE
value is C:\TEMP\MJS\Checkpoint, the starting current directory for that worker session is

C:\TEMP\mjs\Checkpoint\nodeA52_worker22_mlworker_log\work

Writing to Files from Workers
When multiple workers attempt to write to the same file, you might end up with a race condition,
clash, or one worker might overwrite the data from another worker. This might be likely to occur
when:

• There is more than one worker per machine, and they attempt to write to the same file.
• The workers have a shared file system, and use the same path to identify a file for writing.

In some cases an error can result, but sometimes the overwriting can occur without error. To avoid an
issue, be sure that each worker or parfor iteration has unique access to any files it writes or saves
data to. There is no problem when multiple workers read from the same file.

Saving or Sending Objects
Do not use the save or load function on Parallel Computing Toolbox objects. Some of the
information that these objects require is stored in the MATLAB session persistent memory and would
not be saved to a file.

Similarly, you cannot send a parallel computing object between parallel computing processes by
means of an object's properties. For example, you cannot pass a MATLAB Job Scheduler, job, task, or
worker object to MATLAB workers as part of a job's JobData property.

Also, system objects (e.g., Java classes, .NET classes, shared libraries, etc.) that are loaded, imported,
or added to the Java search path in the MATLAB client, are not available on the workers unless
explicitly loaded, imported, or added on the workers, respectively. Other than in the task function
code, typical ways of loading these objects might be in taskStartup, jobStartup, and in the case
of workers in a parallel pool, in poolStartup and using pctRunOnAll.
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Using clear functions
Executing

clear functions

clears all Parallel Computing Toolbox objects from the current MATLAB session. They still remain in
the MATLAB Job Scheduler. For information on recreating these objects in the client session, see
“Recover Objects” on page 6-11.

Running Tasks That Call Simulink Software
The first task that runs on a worker session that uses Simulink software can take a long time to run,
as Simulink is not automatically started at the beginning of the worker session. Instead, Simulink
starts up when first called. Subsequent tasks on that worker session will run faster, unless the worker
is restarted between tasks.

Using the pause Function
On worker sessions running on Macintosh or UNIX operating systems, pause(Inf) returns
immediately, rather than pausing. This is to prevent a worker session from hanging when an interrupt
is not possible.

Transmitting Large Amounts of Data
Operations that involve transmitting many objects or large amounts of data over the network can take
a long time. For example, getting a job's Tasks property or the results from all of a job's tasks can
take a long time if the job contains many tasks. See also “Attached Files Size Limitations” on page 5-
42.

Interrupting a Job
Because jobs and tasks are run outside the client session, you cannot use Ctrl+C (^C) in the client
session to interrupt them. To control or interrupt the execution of jobs and tasks, use such functions
as cancel, delete, demote, promote, pause, and resume.

Speeding Up a Job
You might find that your code runs slower on multiple workers than it does on one desktop computer.
This can occur when task startup and stop time is significant relative to the task run time. The most
common mistake in this regard is to make the tasks too small, i.e., too fine-grained. Another common
mistake is to send large amounts of input or output data with each task. In both of these cases, the
time it takes to transfer data and initialize a task is far greater than the actual time it takes for the
worker to evaluate the task function.
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Control Random Number Streams on Workers
In this section...
“Client and Workers” on page 5-29
“Different Workers” on page 5-30
“Normally Distributed Random Numbers” on page 5-31

The random number generation functions rand, randi, and randn behave differently for parallel
calculations compared to your MATLAB client. You can change the behavior of random number
generators on parallel workers or on the client to generate reproducible streams of random numbers.

By default, the MATLAB client and MATLAB workers use different random number generators, even if
the workers are part of a local cluster on the same machine as the client. The table below summarizes
the default settings for the client and workers:

 Generator Seed Normal Transform
Client 'Twister' or 'mt19937ar' 0 'Ziggurat'
Worker (local or remote) 'Threefry' or

'Threefry4x64_20'
0 'Inversion'

For more information about the available generators and normal transforms, see “Choosing a
Random Number Generator” (MATLAB). Each worker in a cluster draws random numbers from an
independent stream with the properties in the table. By default, the random numbers generated on
each worker in a parfor loop are different from each other and from the random numbers generated
on the client.

Note If you have a GPU on your worker, different settings apply to random number streams on the
GPU. For more information, see “Random Number Streams on a GPU” on page 8-6.

Client and Workers
If it is necessary to generate the same stream of numbers in the client and workers, you can set one
to match the other. You can set the generator algorithm and seed using rng.

For example, you might run a script as a batch job on a worker, and need the same generator or
sequence as the client. Suppose you start with a script file named randScript1.m that contains the
line:

R = rand(1,4);

You can run this script in the client, and then as a batch job on a worker. Notice that the default
generated random number sequences in the results are different.

randScript1; % In client
R

R =
    0.8147    0.9058    0.1270    0.9134
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parallel.defaultClusterProfile('local')
c = parcluster();
j = batch(c,'randScript1'); % On worker
wait(j);load(j);
R

R =
    0.1349    0.6744    0.9301    0.5332

For identical results, you can set the client and worker to use the same generator and seed. Here, the
file randScript2.m contains the following code:

rng(1,'Threefry');
R = rand(1,4);

Now, run the new script in the client and on a worker:

randScript2; % In client
R

R =
    0.1404    0.8197    0.1073    0.4131

j = batch(c,'randScript2'); % On worker
wait(j); load(j);
R

R =
    0.1404    0.8197    0.1073    0.4131

Different Workers
By default, each worker in a cluster working on the same job has an independent random number
stream. If rand, randi, or randn are called in parallel, each worker produces a unique sequence of
random numbers.

Note Because rng('shuffle') seeds the random number generator based on the current time, do
not use this command to set the random number stream on different workers if you want to ensure
independent streams. This is especially true when the command is sent to multiple workers
simultaneously, such as inside a parfor, spmd, or a communicating job. For independent streams on
the workers, use the default behavior; or if that is not sufficient for your needs, consider using a
unique substream on each worker using RandStream.

This example uses two workers in a parallel pool to show they generate unique random number
sequences.

p = parpool(2);
spmd
    R = rand(1,4); % Different on each worker
end
R{1},R{2}

ans = 
    0.1349    0.6744    0.9301    0.5332
ans =
    0.6383    0.5195    0.1398    0.6509
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delete(p)

If you need all workers to generate the same sequence of numbers, you can set each worker to use
the same generator settings:

p = parpool(2);
spmd
    rng(0,'Philox'); % Default seed 0.
    R = rand(1,4); % Same on all workers
end
R{1},R{2}

ans =
    0.3655    0.6975    0.1789    0.4549
ans =
    0.3655    0.6975    0.1789    0.4549

delete(p)

If you need to control the random numbers at each iteration of a parfor-loop, see “Repeat Random
Numbers in parfor-Loops” on page 2-70.

Normally Distributed Random Numbers
If you are working with normally distributed random numbers using the randn function, you can use
the same methods as above using RandStream to set the generator type, seed, and normal
transformation algorithm on each worker and the client.

For example, suppose the file randScript3.m contains the code:

stream = RandStream('Threefry','Seed',0,'NormalTransform','Inversion');
RandStream.setGlobalStream(stream);
R = randn(1,7)

You can run this code on the client and on a worker in a parallel job (using batch or spmd) to
produce the same sequence of random numbers:

R =
    -0.3479    0.1057    0.3969    0.6544   -1.8228    0.9587    0.5360

See Also
RandStream | rng

More About
• “Repeat Random Numbers in parfor-Loops” on page 2-70
• “Random Number Streams on a GPU” on page 8-6
• “Creating and Controlling a Random Number Stream” (MATLAB)
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Profiling Parallel Code
In this section...
“Profile Parallel Code” on page 5-32
“Analyze Parallel Profile Data” on page 5-34

The parallel profiler provides an extension of the profile command and the profile viewer
specifically for workers in a parallel pool, to enable you to see how much time each worker spends
evaluating each function and how much time communicating or waiting for communications with the
other workers. For more information about the standard profiler and its views, see “Profile Your Code
to Improve Performance” (MATLAB).

For parallel profiling, you use the mpiprofile command in a similar way to how you use profile.

Profile Parallel Code
This example shows how to profile parallel code using the parallel profiler on workers in a parallel
pool.

Create a parallel pool.

numberOfWorkers = 3;
pool = parpool(numberOfWorkers);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 3).

Collect parallel profile data by enabling mpiprofile.

mpiprofile on

Run your parallel code. For the purposes of this example, use a simple parfor loop that iterates over
a series of values.

values = [5 12 13 1 12 5];
tic;
parfor idx = 1:numel(values)
    u = rand(values(idx)*3e4,1);
    out(idx) = max(conv(u,u));
end
toc

Elapsed time is 31.228931 seconds.

After the code completes, view the results from the parallel profiler by calling mpiprofile viewer.
This action also stops profile data collection.

mpiprofile viewer

The report shows execution time information for each function that runs on the workers. You can
explore which functions take the most time in each worker.

Generally, comparing the workers with the minimum and maximum total execution times is useful. To
do so, click Compare (max vs. min TotalTime) in the report. In this example, observe that conv
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executes multiple times and takes significantly longer in one worker than in the other. This
observation suggests that the load might not be distributed evenly across the workers.

• If you do not know the workload of each iteration, then a good practice is to randomize the
iterations, such as in the following sample code.

values = values(randperm(numel(values)));

• If you do know the workload of each iteration in your parfor loop, then you can use
parforOptions to control the partitioning of iterations into subranges for the workers. For more
information, see parforOptions.

In this example, the greater values(idx) is, the more computationally intensive the iteration is.
Create a set of parfor options to divide the parfor iterations into subranges of size 2 so that the
workload is better distributed.

opts = parforOptions(pool,"RangePartitionMethod","fixed","SubrangeSize",2);

Enable the parallel profiler.

mpiprofile on

Run the same code as before. To use the parfor options, pass them to the second input argument of
parfor.

values = [5 12 13 1 12 5];
tic;
parfor (idx = 1:numel(values),opts)
    u = rand(values(idx)*3e4,1);
    out(idx) = max(conv(u,u));
end
toc

Elapsed time is 21.077027 seconds.
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Visualize the parallel profiler results.

mpiprofile viewer

In the report, select Compare (max vs. min TotalTime) to compare the workers with the minimum
and maximum total execution times. Observe that this time, the multiple executions of conv take a
similar amount of time in all workers. The workload is now better distributed.

Analyze Parallel Profile Data
The profiler collects information about the execution of code on each worker and the communications
between the workers. Such information includes:

• Execution time of each function on each worker.
• Execution time of each line of code in each function.
• Amount of data transferred between each worker.
• Amount of time each worker spends waiting for communications.

The remainder of this section is an example that illustrates some of the features of the parallel profile
viewer. The example profiles parallel execution of matrix multiplication of distributed arrays on a
parallel pool of cluster workers.

parpool

Starting parallel pool (parpool) using the 'MyCluster' profile ...
Connected to the parallel pool (number of workers: 64).

R1 = rand(5e4,'distributed');
R2 = rand(5e4,'distributed');
mpiprofile on
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R = R1*R2;
mpiprofile viewer

The last command opens the Profiler window, first showing the Parallel Profile Summary (or function
summary report) for worker 1.

The function summary report displays the data for each function executed on a worker in sortable
columns with the following headers:

Column Header Description
Calls How many times the function was called on this worker
Total Time The total amount of time this worker spent executing this function
Self Time The time this worker spent inside this function, not within children or local

functions
Total Comm Time The total time this worker spent transferring data with other workers,

including waiting time to receive data
Self Comm Waiting Time The time this worker spent during this function waiting to receive data

from other workers
Total Inter-worker Data The amount of data transferred to and from this worker for this function
Computation Time Ratio The ratio of time spent in computation for this function vs. total time

(which includes communication time) for this function
Total Time Plot Bar graph showing relative size of Self Time, Self Comm Waiting Time, and

Total Time for this function on this worker

Select the name of any function in the list for more details about the execution of that function. The
function detail report for codistributor1d.hMtimesImpl includes this listing:
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The code that the report displays comes from the client. If the code has changed on the client since
the communicating job ran on the workers, or if the workers are running a different version of the
functions, the display might not accurately reflect what actually executed.

You can display information for each worker, or use the comparison controls to display information for
several workers simultaneously. Two buttons provide Automatic Comparison Selection, so you can
compare the data from the workers that took the most versus the least amount of time to execute the
code, or data from the workers that spent the most versus the least amount of time in performing
interworker communication. Manual Comparison Selection allows you to compare data from
specific workers or workers that meet certain criteria.

The following listing from the summary report shows the result of using the Automatic Comparison
Selection of Compare (max vs. min TotalTime). The comparison shows data from worker 50
compared to worker 62 because these are the workers that spend the most versus least amount of
time executing the code.
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The following figure shows a summary of all the functions executed during the profile collection time.
The Manual Comparison Selection of max Time Aggregate means that data is considered from
all the workers for all functions to determine which worker spent the maximum time on each
function. Next to each function's name is the worker that took the longest time to execute that
function. The other columns list the data from that worker.
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The next figure shows a summary report for the workers that spend the most versus least time for
each function. A Manual Comparison Selection of max Time Aggregate against min Time >0
Aggregate generated this summary. Both aggregate settings indicate that the profiler should
consider data from all workers for all functions, for both maximum and minimum. This report lists the
data for codistributor1d.hMtimesImpl from workers 50 and 62, because they spent the
maximum and minimum times on this function. Similarly, other functions are listed.

Select a function name in the summary listing of a comparison to get a detailed comparison. The
detailed comparison for codistributor1d.hMtimesImpl looks like this, displaying line-by-line
data from both workers:
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To see plots of communication data, select Plot All Per Worker Communication in the Show
Figures menu. The top portion of the plot view report plots how much data each worker receives
from each other worker for all functions.
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To see only a plot of interworker communication times, select Plot Communication Time Per
Worker in the Show Figures menu.
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Plots like those in the previous two figures can help you determine the best way to balance work
among your workers, perhaps by altering the partition scheme of your codistributed arrays.
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Troubleshooting and Debugging
In this section...
“Attached Files Size Limitations” on page 5-42
“File Access and Permissions” on page 5-42
“No Results or Failed Job” on page 5-43
“Connection Problems Between the Client and MATLAB Job Scheduler” on page 5-44
“SFTP Error: Received Message Too Long” on page 5-44

Attached Files Size Limitations
The combined size of all attached files for a job is limited to 4 GB.

File Access and Permissions
Ensuring That Workers on Windows Operating Systems Can Access Files

By default, a worker on a Windows operating system is installed as a service running as
LocalSystem, so it does not have access to mapped network drives.

Often a network is configured to not allow services running as LocalSystem to access UNC or
mapped network shares. In this case, you must run the mjs service under a different user with rights
to log on as a service. See the section “Set the User” (MATLAB Parallel Server) in the MATLAB
Parallel Server System Administrator's Guide.

Task Function Is Unavailable

If a worker cannot find the task function, it returns the error message

Error using ==> feval
      Undefined command/function 'function_name'.

The worker that ran the task did not have access to the function function_name. One solution is to
make sure the location of the function’s file, function_name.m, is included in the job’s
AdditionalPaths property. Another solution is to transfer the function file to the worker by adding
function_name.m to the AttachedFiles property of the job.

Load and Save Errors

If a worker cannot save or load a file, you might see the error messages

??? Error using ==> save
Unable to write file myfile.mat: permission denied.
??? Error using ==> load
Unable to read file myfile.mat: No such file or directory.

In determining the cause of this error, consider the following questions:

• What is the worker’s current folder?
• Can the worker find the file or folder?
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• What user is the worker running as?
• Does the worker have permission to read or write the file in question?

Tasks or Jobs Remain in Queued State

A job or task might get stuck in the queued state. To investigate the cause of this problem, look for
the scheduler’s logs:

• Platform LSF schedulers might send emails with error messages.
• Microsoft Windows HPC Server (including CCS), LSF®, PBS Pro, and TORQUE save output

messages in a debug log. See the getDebugLog reference page.
• If using a generic scheduler, make sure the submit function redirects error messages to a log file.

Possible causes of the problem are:

• The MATLAB worker failed to start due to licensing errors, the executable is not on the default
path on the worker machine, or is not installed in the location where the scheduler expected it to
be.

• MATLAB could not read/write the job input/output files in the scheduler’s job storage location. The
storage location might not be accessible to all the worker nodes, or the user that MATLAB runs as
does not have permission to read/write the job files.

• If using a generic scheduler:

• The environment variable PARALLEL_SERVER_DECODE_FUNCTION was not defined before the
MATLAB worker started.

• The decode function was not on the worker’s path.

No Results or Failed Job
Task Errors

If your job returned no results (i.e., fetchOutputs(job) returns an empty cell array), it is probable
that the job failed and some of its tasks have their Error properties set.

You can use the following code to identify tasks with error messages:

errmsgs = get(yourjob.Tasks, {'ErrorMessage'});
nonempty = ~cellfun(@isempty, errmsgs);
celldisp(errmsgs(nonempty));

This code displays the nonempty error messages of the tasks found in the job object yourjob.

Debug Logs

If you are using a supported third-party scheduler, you can use the getDebugLog function to read the
debug log from the scheduler for a particular job or task.

For example, find the failed job on your LSF scheduler, and read its debug log:

c = parcluster('my_lsf_profile')
failedjob = findJob(c, 'State', 'failed');
message = getDebugLog(c, failedjob(1))
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Connection Problems Between the Client and MATLAB Job Scheduler
For testing connectivity between the client machine and the machines of your compute cluster, you
can use Admin Center. For more information about Admin Center, including how to start it and how to
test connectivity, see “Start Admin Center” (MATLAB Parallel Server) and “Test Connectivity”
(MATLAB Parallel Server).

Detailed instructions for other methods of diagnosing connection problems between the client and
MATLAB Job Scheduler can be found in some of the Bug Reports listed on the MathWorks Web site.

The following sections can help you identify the general nature of some connection problems.

Client Cannot See the MATLAB Job Scheduler

If you cannot locate or connect to your MATLAB Job Scheduler with parcluster, the most likely
reasons for this failure are:

• The MATLAB Job Scheduler is currently not running.
• Firewalls do not allow traffic from the client to the MATLAB Job Scheduler.
• The client and the MATLAB Job Scheduler are not running the same version of the software.
• The client and the MATLAB Job Scheduler cannot resolve each other’s short hostnames.
• The MATLAB Job Scheduler is using a nondefault BASE_PORT setting as defined in the mjs_def
file, and the Host property in the cluster profile does not specify this port.

MATLAB Job Scheduler Cannot See the Client

If a warning message says that the MATLAB Job Scheduler cannot open a TCP connection to the
client computer, the most likely reasons for this are

• Firewalls do not allow traffic from the MATLAB Job Scheduler to the client.
• The MATLAB Job Scheduler cannot resolve the short hostname of the client computer. Use

pctconfig to change the hostname that the MATLAB Job Scheduler will use for contacting the
client.

SFTP Error: Received Message Too Long
The example code for generic schedulers with non-shared file systems contacts an sftp server to
handle the file transfer to and from the cluster’s file system. This use of sftp is subject to all the
normal sftp vulnerabilities. One problem that can occur results in an error message similar to this:
Caused by:
    Error using ==> RemoteClusterAccess>RemoteClusterAccess.waitForChoreToFinishOrError at 780
    The following errors occurred in the 
         com.mathworks.toolbox.distcomp.clusteraccess.UploadFilesChore:
     Could not send Job3.common.mat for job 3: 
     One of your shell's init files contains a command that is writing to stdout,
        interfering with sftp. Access help
     com.mathworks.toolbox.distcomp.remote.spi.plugin.SftpExtraBytesFromShellException: 
     One of your shell's init files contains a command that is writing to stdout, 
        interfering with sftp.
     Find and wrap the command with a conditional test, such as

        if ($?TERM != 0) then
            if ("$TERM" != "dumb") then
                /your command/
            endif
        endif

     : 4: Received message is too long: 1718579037
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The telling symptom is the phrase "Received message is too long:" followed by a very large
number.

The sftp server starts a shell, usually bash or tcsh, to set your standard read and write permissions
appropriately before transferring files. The server initializes the shell in the standard way, calling files
like .bashrc and .cshrc. This problem happens if your shell emits text to standard out when it starts.
That text is transferred back to the sftp client running inside MATLAB, and is interpreted as the size
of the sftp server's response message.

To work around this error, locate the shell startup file code that is emitting the text, and either
remove it or bracket it within if statements to see if the sftp server is starting the shell:

if ($?TERM != 0) then
    if ("$TERM" != "dumb") then
        /your command/
    endif
endif

You can test this outside of MATLAB with a standard UNIX or Windows sftp command-line client
before trying again in MATLAB. If the problem is not fixed, the error message persists:

> sftp yourSubmitMachine
Connecting to yourSubmitMachine...
Received message too long 1718579042

If the problem is fixed, you should see:

> sftp yourSubmitMachine
Connecting to yourSubmitMachine...
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Big Data Workflow Using Tall Arrays and Datastores
In this section...
“Running Tall Arrays in Parallel” on page 5-47
“Use mapreducer to Control Where Your Code Runs” on page 5-47

The illustration shows a typical workflow that uses tall arrays to analyze a large data set. In this
workflow, you analyze a small subset of the data before scaling up to analyze the entire data set.
Parallel computing can help you scale up from steps six to seven. That is, after checking that your
code works on the small data set, run it on the whole data set. You can use MATLAB to enhance this
workflow.

Problem Solution Required Products More Information
Is your data
too big?

To work with out-of-
memory data with any
number of rows, use tall
arrays.

This workflow is well
suited to data analytics and
machine learning.

MATLAB “Tall Arrays for Out-of-Memory
Data” (MATLAB)

Use tall arrays in parallel
on your local machine.

MATLAB

Parallel Computing
Toolbox

“Use Tall Arrays on a Parallel
Pool” on page 5-48
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Problem Solution Required Products More Information
Use tall arrays in parallel
on your cluster.

MATLAB

Parallel Computing
Toolbox

MATLAB Parallel
Server

“Use Tall Arrays on a Spark
Enabled Hadoop Cluster” on
page 5-51

If your data is large in
multiple dimensions, use
distributed instead.

MATLAB

Parallel Computing
Toolbox

MATLAB Parallel
Server

“Distributing Arrays to Parallel
Workers” on page 3-10

Running Tall Arrays in Parallel
Parallel Computing Toolbox can immediately speed up your tall array calculations by using the full
processing power of multicore computers to execute applications with a parallel pool of workers. If
you already have Parallel Computing Toolbox installed, then you probably do not need to do anything
special to take advantage of these capabilities. For more information about using tall arrays with
Parallel Computing Toolbox, see “Use Tall Arrays on a Parallel Pool” on page 5-48.

Use mapreducer to Control Where Your Code Runs
When you execute tall arrays, the default execution environment uses either the local MATLAB
session, or a local parallel pool if you have Parallel Computing Toolbox. The default pool uses local
workers, typically one worker for each core in your machine. Use the mapreducer function to
change the execution environment of tall arrays to use a different cluster.

One of the benefits of developing your algorithms with tall arrays is that you only need to write the
code once. You can develop your code locally, then use mapreducer to scale up and take advantage
of the capabilities offered by Parallel Computing Toolbox and MATLAB Parallel Server.

See Also
datastore | gather | mapreducer | tall

Related Examples
• “Use Tall Arrays on a Parallel Pool” on page 5-48
• “Use Tall Arrays on a Spark Enabled Hadoop Cluster” on page 5-51
• “Tall Arrays for Out-of-Memory Data” (MATLAB)
• “Choose a Parallel Computing Solution” on page 1-16

More About
• “Datastore” (MATLAB)
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Use Tall Arrays on a Parallel Pool
If you have Parallel Computing Toolbox, you can use tall arrays in your local MATLAB session, or on a
local parallel pool. You can also run tall array calculations on a cluster if you have MATLAB Parallel
Server installed. This example uses the workers in a local cluster on your machine. You can develop
code locally, and then scale up, to take advantage of the capabilities offered by Parallel Computing
Toolbox and MATLAB Parallel Server without having to rewrite your algorithm. See also “Big Data
Workflow Using Tall Arrays and Datastores” on page 5-46.

Create a datastore and convert it into a tall table.

ds = datastore('airlinesmall.csv');
varnames = {'ArrDelay', 'DepDelay'};
ds.SelectedVariableNames = varnames;
ds.TreatAsMissing = 'NA';

If you have Parallel Computing Toolbox installed, when you use the tall function, MATLAB
automatically starts a parallel pool of workers, unless you turn off the default parallel pool
preference. The default cluster uses local workers on your machine.

Note If you want to turn off automatically opening a parallel pool, change your parallel preferences.
If you turn off the Automatically create a parallel pool option, then you must explicitly start a pool
if you want the tall function to use it for parallel processing. See “Specify Your Parallel Preferences”
on page 5-9.

If you have Parallel Computing Toolbox, you can run the same code as the MATLAB tall table example
(MATLAB) and automatically execute it in parallel on the workers of your local machine.

Create a tall table tt from the datastore.

tt = tall(ds)

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

tt =

  M×2 tall table 

    ArrDelay    DepDelay
    ________    ________

     8          12      
     8           1      
    21          20      
    13          12      
     4          -1      
    59          63      
     3          -2      
    11          -1      
    :           :
    :           :

The display indicates that the number of rows, M, is not yet known. M is a placeholder until the
calculation completes.
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Extract the arrival delay ArrDelay from the tall table. This action creates a new tall array variable to
use in subsequent calculations.

a = tt.ArrDelay;

You can specify a series of operations on your tall array, which are not executed until you call
gather. Doing so enables you to batch up commands that might take a long time. For example,
calculate the mean and standard deviation of the arrival delay. Use these values to construct the
upper and lower thresholds for delays that are within 1 standard deviation of the mean.

m = mean(a,'omitnan');
s = std(a,'omitnan');
one_sigma_bounds = [m-s m m+s];

Use gather to calculate one_sigma_bounds, and bring the answer into memory.

sig1 = gather(one_sigma_bounds)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 4.5 sec
Evaluation completed in 6.3 sec

sig1 =

  -23.4572    7.1201   37.6975

You can specify multiple inputs and outputs to gather if you want to evaluate several things at once.
Doing so is faster than calling gather separately on each tall array . As an example, calculate the
minimum and maximum arrival delay.

[max_delay, min_delay] = gather(max(a),min(a))

max_delay =

        1014

min_delay =

   -64

If you want to develop in serial and not use local workers or your specified cluster, enter the following
command.

mapreducer(0);

If you use mapreducer to change the execution environment after creating a tall array, then the tall
array is invalid and you must recreate it. To use local workers or your specified cluster again, enter
the following command.

mapreducer(gcp);

Note One of the benefits of developing algorithms with tall arrays is that you only need to write the
code once. You can develop your code locally, and then use mapreducer to scale up to a cluster,
without needing to rewrite your algorithm. For an example, see “Use Tall Arrays on a Spark Enabled
Hadoop Cluster” on page 5-51.
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See Also
datastore | gather | mapreducer | parpool | table | tall

Related Examples
• “Big Data Workflow Using Tall Arrays and Datastores” on page 5-46
• “Use Tall Arrays on a Spark Enabled Hadoop Cluster” on page 5-51
• “Tall Arrays for Out-of-Memory Data” (MATLAB)

More About
• “Datastore” (MATLAB)
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Use Tall Arrays on a Spark Enabled Hadoop Cluster

Creating and Using Tall Tables
This example shows how to modify a MATLAB example of creating a tall table to run on a Spark
enabled Hadoop® cluster. You can use this tall table to create tall arrays and calculate statistical
properties. You can develop code locally and then scale up, to take advantage of the capabilities
offered by Parallel Computing Toolbox and MATLAB Parallel Server without having to rewrite your
algorithm. See also “Big Data Workflow Using Tall Arrays and Datastores” on page 5-46 and
“Configure a Hadoop Cluster” (MATLAB Parallel Server)

First, you must set environment variables and cluster properties as appropriate for your specific
Spark enabled Hadoop cluster configuration. See your system administrator for the values for these
and other properties necessary for submitting jobs to your cluster.

setenv('HADOOP_HOME', '/path/to/hadoop/install')
setenv('SPARK_HOME', '/path/to/spark/install');
cluster = parallel.cluster.Hadoop;

% Optionally, if you want to control the exact number of workers:
cluster.SparkProperties('spark.executor.instances') = '16';

mapreducer(cluster);

Note In the setup step, you use mapreducer to set the cluster execution environment. In the next
step, you create a tall array. If you modify or delete the cluster execution environment after creating a
tall array, then the tall array is invalid and you must recreate it.

Note If you want to develop in serial and not use local workers, enter the following command.

mapreducer(0);

After setting your environment variables and cluster properties, you can run the MATLAB tall table
example (MATLAB) on the Spark enabled Hadoop cluster instead of on your local machine. Create a
datastore and convert it into a tall table. MATLAB automatically starts a Spark job to run subsequent
calculations on the tall table.

ds = datastore('airlinesmall.csv');
varnames = {'ArrDelay', 'DepDelay'};
ds.SelectedVariableNames = varnames;
ds.TreatAsMissing = 'NA';

Create a tall table tt from the datastore.

tt = tall(ds)

Starting a Spark Job on the Hadoop cluster. This could take a few minutes ...done.

tt =

  M×2 tall table 
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    ArrDelay    DepDelay
    ________    ________

     8          12      
     8           1      
    21          20      
    13          12      
     4          -1      
    59          63      
     3          -2      
    11          -1      
    :           :
    :           :

The display indicates that the number of rows, M, is not yet known. M is a placeholder until the
calculation completes.

Extract the arrival delay ArrDelay from the tall table. This action creates a new tall array variable to
use in subsequent calculations.

a = tt.ArrDelay;

You can specify a series of operations on your tall array, which are not executed until you call
gather. Doing so allows you to batch up commands that might take a long time. As an example,
calculate the mean and standard deviation of the arrival delay. Use these values to construct the
upper and lower thresholds for delays that are within 1 standard deviation of the mean.

m = mean(a,'omitnan');
s = std(a,'omitnan');
one_sigma_bounds = [m-s m m+s];

Use gather to calculate one_sigma_bounds, and bring the answer into memory.

sig1 = gather(one_sigma_bounds)

Evaluating tall expression using the Spark Cluster:
- Pass 1 of 1: Completed in 0.95 sec
Evaluation completed in 1.3 sec

sig1 =

  -23.4572    7.1201   37.6975

You can specify multiple inputs and outputs to gather if you want to evaluate several things at once.
Doing so is faster than calling gather separately on each tall array. For example, calculate the
minimum and maximum arrival delay.

[max_delay, min_delay] = gather(max(a),min(a))

max_delay =

        1014

min_delay =

   -64
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Note These examples take more time to complete the first time if MATLAB is starting on the cluster
workers.

When using tall arrays on a Spark enabled Hadoop cluster, compute resources from the Hadoop
cluster will be reserved for the lifetime of the mapreducer execution environment. To clear these
resources, you must delete the mapreducer:

delete(gcmr);

Alternatively, you can change to a different execution environment, for example:

mapreducer(0);

See Also
datastore | gather | mapreducer | parallel.cluster.Hadoop | table | tall

Related Examples
• “Big Data Workflow Using Tall Arrays and Datastores” on page 5-46
• “Use Tall Arrays on a Parallel Pool” on page 5-48
• “Configure a Hadoop Cluster” (MATLAB Parallel Server)
• “Tall Arrays for Out-of-Memory Data” (MATLAB)
• “Read and Analyze Hadoop Sequence File” (MATLAB)

More About
• “Datastore” (MATLAB)
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Run mapreduce on a Parallel Pool
In this section...
“Start Parallel Pool” on page 5-54
“Compare Parallel mapreduce” on page 5-54

Start Parallel Pool
If you have Parallel Computing Toolbox installed, execution of mapreduce can open a parallel pool on
the cluster specified by your default profile, for use as the execution environment.

You can set your parallel preferences so that a pool does not automatically open. In this case, you
must explicitly start a pool if you want mapreduce to use it for parallelization of its work. See
“Specify Your Parallel Preferences” on page 5-9.

For example, the following conceptual code starts a pool, and some time later uses that open pool for
the mapreducer configuration.

p = parpool('local',n);
mr = mapreducer(p);
outds = mapreduce(tds,@MeanDistMapFun,@MeanDistReduceFun,mr)

Note mapreduce can run on any cluster that supports parallel pools. The examples in this topic use
a local cluster, which works for all Parallel Computing Toolbox installations.

Compare Parallel mapreduce
The following example calculates the mean arrival delay from a datastore of airline data. First it runs
mapreduce in the MATLAB client session, then it runs in parallel on a local cluster. The mapreducer
function explicitly controls the execution environment.

Begin by starting a parallel pool on a local cluster.

p = parpool('local',4);

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

Create two MapReducer objects for specifying the different execution environments for mapreduce.

inMatlab = mapreducer(0);
inPool = mapreducer(p);

Create and preview the datastore. The data set used in this example is available in matlabroot/
toolbox/matlab/demos.

ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
     'SelectedVariableNames','ArrDelay','ReadSize',1000);
preview(ds)

    ArrDelay
    ________
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     8      
     8      
    21      
    13      
     4      
    59      
     3      
    11      

Next, run the mapreduce calculation in the MATLAB client session. The map and reduce functions
are available in matlabroot/toolbox/matlab/demos.

meanDelay = mapreduce(ds,@meanArrivalDelayMapper,@meanArrivalDelayReducer,inMatlab);

********************************
*      MAPREDUCE PROGRESS      *
********************************
Map   0% Reduce   0%
Map  10% Reduce   0%
Map  20% Reduce   0%
Map  30% Reduce   0%
Map  40% Reduce   0%
Map  50% Reduce   0%
Map  60% Reduce   0%
Map  70% Reduce   0%
Map  80% Reduce   0%
Map  90% Reduce   0%
Map 100% Reduce 100%

readall(meanDelay)

           Key             Value  
    __________________    ________

    'MeanArrivalDelay'    [7.1201]

Then, run the calculation on the current parallel pool. Note that the output text indicates a parallel
mapreduce.

meanDelay = mapreduce(ds,@meanArrivalDelayMapper,@meanArrivalDelayReducer,inPool);

Parallel mapreduce execution on the parallel pool:
********************************
*      MAPREDUCE PROGRESS      *
********************************
Map   0% Reduce   0%
Map 100% Reduce  50%
Map 100% Reduce 100%

readall(meanDelay)

           Key             Value  
    __________________    ________

    'MeanArrivalDelay'    [7.1201]

With this relatively small data set, a performance improvement with the parallel pool is not likely.
This example is to show the mechanism for running mapreduce on a parallel pool. As the data set
grows, or the map and reduce functions themselves become more computationally intensive, you
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might expect to see improved performance with the parallel pool, compared to running mapreduce in
the MATLAB client session.

Note When running parallel mapreduce on a cluster, the order of the key-value pairs in the output is
different compared to running mapreduce in MATLAB. If your application depends on the
arrangement of data in the output, you must sort the data according to your own requirements.

See Also
Functions
datastore | mapreduce | mapreducer

Related Examples
• “Getting Started with MapReduce” (MATLAB)
• “Run mapreduce on a Hadoop Cluster” on page 5-57

More About
• “MapReduce” (MATLAB)
• “Datastore” (MATLAB)
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Run mapreduce on a Hadoop Cluster

In this section...
“Cluster Preparation” on page 5-57
“Output Format and Order” on page 5-57
“Calculate Mean Delay” on page 5-57

Cluster Preparation
Before you can run mapreduce on a Hadoop cluster, make sure that the cluster and client machine
are properly configured. Consult your system administrator, or see “Configure a Hadoop Cluster”
(MATLAB Parallel Server).

Output Format and Order
When running mapreduce on a Hadoop cluster with binary output (the default), the resulting
KeyValueDatastore points to Hadoop Sequence files, instead of binary MAT-files as generated by
mapreduce in other environments. For more information, see the 'OutputType' argument
description on the mapreduce reference page.

When running mapreduce on a Hadoop cluster, the order of the key-value pairs in the output is
different compared to running mapreduce in other environments. If your application depends on the
arrangement of data in the output, you must sort the data according to your own requirements.

Calculate Mean Delay
This example shows how to modify the MATLAB example for calculating mean airline delays to run on
a Hadoop cluster.

First, you must set environment variables and cluster properties as appropriate for your specific
Hadoop configuration. See your system administrator for the values for these and other properties
necessary for submitting jobs to your cluster.

setenv('HADOOP_HOME', '/path/to/hadoop/install')
cluster = parallel.cluster.Hadoop;

Note The specified outputFolder must not already exist. The mapreduce output from a Hadoop
cluster cannot overwrite an existing folder.

You will lose your data, if mapreducer is changed or deleted.

Create a MapReducer object to specify that mapreduce should use your Hadoop cluster.

mr = mapreducer(cluster);

Create and preview the datastore. The data set is available in matlabroot/toolbox/matlab/
demos.
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ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
     'SelectedVariableNames','ArrDelay','ReadSize',1000);
preview(ds)

    ArrDelay
    ________

     8
     8
    21
    13
     4
    59
     3
    11

Next, specify your output folder, output outds and call mapreduce to execute on the Hadoop cluster
specified by mr. The map and reduce functions are available in matlabroot/toolbox/matlab/
demos.

outputFolder = 'hdfs:///home/myuser/out1';
outds = mapreduce(ds,@myMapperFcn,@myReducerFcn,'OutputFolder',outputFolder);
meanDelay = mapreduce(ds,@meanArrivalDelayMapper,@meanArrivalDelayReducer,mr,...
            'OutputFolder',outputFolder)

Parallel mapreduce execution on the Hadoop cluster:
********************************
*      MAPREDUCE PROGRESS      *
********************************
Map   0% Reduce   0%
Map  66% Reduce   0%
Map 100% Reduce  66%
Map 100% Reduce 100%

meanDelay =

  KeyValueDatastore with properties:

       Files: {
              ' .../tmp/alafleur/tpc00621b1_4eef_4abc_8078_646aa916e7d9/part0.seq'
              }
    ReadSize: 1 key-value pairs
    FileType: 'seq'

Read the result.

readall(meanDelay)

           Key             Value
    __________________    ________

    'MeanArrivalDelay'    [7.1201]

Although for demonstration purposes this example uses a local data set, it is likely when using
Hadoop that your data set is stored in an HDFS™ file system. Likewise, you might be required to
store the mapreduce output in HDFS. For details about accessing HDFS in MATLAB, see “Work with
Remote Data” (MATLAB).
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See Also
Functions
datastore | mapreduce | mapreducer | parallel.cluster.Hadoop

Related Examples
• “Getting Started with MapReduce” (MATLAB)
• “Run mapreduce on a Parallel Pool” on page 5-54

More About
• “MapReduce” (MATLAB)
• “Datastore” (MATLAB)
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Partition a Datastore in Parallel
Partitioning a datastore in parallel, with a portion of the datastore on each worker in a parallel pool,
can provide benefits in many cases:

• Perform some action on only one part of the whole datastore, or on several defined parts
simultaneously.

• Search for specific values in the data store, with all workers acting simultaneously on their own
partitions.

• Perform a reduction calculation on the workers across all partitions.

This example shows how to use partition to parallelize the reading of data from a datastore. It
uses a small datastore of airline data provided in MATLAB, and finds the mean of the non-NaN values
from its 'ArrDelay' column.

A simple way to calculate the mean is to divide the sum of all the non-NaN values by the number of
non-NaN values. The following code does this for the datastore first in a non-parallel way. To begin,
you define a function to amass the count and sum. If you want to run this example, copy and save this
function in a folder on the MATLAB command search path.

function [total,count] = sumAndCountArrivalDelay(ds)
total = 0;
count = 0;
while hasdata(ds)
    data = read(ds);
    total = total + sum(data.ArrDelay,1,'OmitNaN');
    count = count + sum(~isnan(data.ArrDelay));
end
end

The following code creates a datastore, calls the function, and calculates the mean without any
parallel execution. The tic and toc functions are used to time the execution, here and in the later
parallel cases.

ds = datastore(repmat({'airlinesmall.csv'},20,1),'TreatAsMissing','NA');
ds.SelectedVariableNames = 'ArrDelay';

reset(ds);
tic
  [total,count] = sumAndCountArrivalDelay(ds)
sumtime = toc
mean = total/count

total =

    17211680

count =

     2417320

sumtime =

    7.7905
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mean =

    7.1201

The partition function allows you to partition the datastore into smaller parts, each represented as
a datastore itself. These smaller datastores work completely independently of each other, so that you
can work with them inside of parallel language features such as parfor loops and spmd blocks.

The number of partitions in the following code is set by the numpartitions function, based on the
datastore itself (ds) and the parallel pool (gcp) size. This does not necessarily equal the number of
workers in the pool. In this case, the number of loop iterations is then set to the number of partitions
(N).

The following code starts a parallel pool on a local cluster, then partitions the datastore among
workers for iterating over the loop. Again, a separate function is called, which includes the parfor
loop to amass the count and sum totals. Copy and save this function if you want to run the example.

function [total, count] = parforSumAndCountArrivalDelay(ds)

N = numpartitions(ds,gcp);
total = 0;
count = 0;
parfor ii = 1:N
    % Get partition ii of the datastore.
    subds = partition(ds,N,ii);
    
    [localTotal,localCount] = sumAndCountArrivalDelay(subds);
    total = total + localTotal;
    count = count + localCount;
end
end

Now the MATLAB code calls this new function, so that the counting and summing of the non-NAN
values can occur in parallel loop iterations.

p = parpool('local',4);

reset(ds);
tic
  [total,count] = parforSumAndCountArrivalDelay(ds)
parfortime = toc
mean = total/count

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).

total =

    17211680

count =

     2417320
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parfortime =

    6.4133

mean =

    7.1201

Rather than let the software calculate the number of partitions, you can explicitly set this value, so
that the data can be appropriately partitioned to fit your algorithm. For example, to parallelize data
from within an spmd block, you can specify the number of workers (numlabs) as the number of
partitions to use. The following function uses an spmd block to perform a parallel read, and explicitly
sets the number of partitions equal to the number of workers. To run this example, copy and save the
function.

function [total,count] = spmdSumAndCountArrivalDelay(ds)
spmd
    subds = partition(ds,numlabs,labindex);
    [total,count] = sumAndCountArrivalDelay(subds);
end
total = sum([total{:}]);
count = sum([count{:}]);
end

Now the MATLAB code calls the function that uses an spmd block.

reset(ds);
tic
  [total,count] = spmdSumAndCountArrivalDelay(ds)
spmdtime = toc
mean = total/count

total =

    17211680

count =

     2417320

spmdtime =

    4.6729

mean =

    7.1201

delete(p);

Parallel pool using the 'local' profile is shutting down.
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You might get some idea of modest performance improvements by comparing the times recorded in
the variables sumtime, parfortime, and spmdtime. Your results might vary, as the performance
can be affected by the datastore size, parallel pool size, hardware configuration, and other factors.
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Program Independent Jobs

• “Program Independent Jobs” on page 6-2
• “Program Independent Jobs on a Local Cluster” on page 6-3
• “Program Independent Jobs for a Supported Scheduler” on page 6-7
• “Share Code with the Workers” on page 6-13
• “Plugin Scripts for Generic Schedulers” on page 6-17
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Program Independent Jobs
The tasks in an independent job do not directly communicate with each other and are independent.
The tasks do not need to run simultaneously, and a worker can run several tasks of the same job in
succession. Typically, all tasks perform the same or similar functions on different data sets in an
embarrassingly parallel configuration.

Some of the details of a job and its tasks can depend on the type of scheduler you are using:

• “Program Independent Jobs on a Local Cluster” on page 6-3
• “Program Independent Jobs for a Supported Scheduler” on page 6-7
• “Plugin Scripts for Generic Schedulers” on page 6-17
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Program Independent Jobs on a Local Cluster
In this section...
“Create and Run Jobs with a Local Cluster” on page 6-3
“Local Cluster Behavior” on page 6-5

Create and Run Jobs with a Local Cluster
Some jobs require more control than the functionality offered by high-level constructs like spmd and
parfor. In such cases, you have to program all the steps for creating and running the job. Using the
local cluster (or local scheduler) on your machine lets you create and test your jobs without using the
resources of your network cluster. Distributing tasks to workers that are all running on your client
machine do not offer any performance enhancement. Therefore this feature is provided primarily for
code development, testing, and debugging.

Note Workers running in a local cluster on a Microsoft Windows operating system can display
Simulink graphics and the output from certain functions such as uigetfile and uigetdir. (With
other platforms or schedulers, workers cannot display any graphical output.) This behavior is subject
to removal in a future release.

This section details the steps of a typical programming session with Parallel Computing Toolbox
software using a local cluster:

• “Create a Cluster Object” on page 6-3
• “Create a Job” on page 6-3
• “Create Tasks” on page 6-4
• “Submit a Job to the Cluster” on page 6-5
• “Fetch the Job Results” on page 6-5

The objects used by the client session to interact with the cluster are only references to data in the
cluster job storage location, not in the client session. After jobs and tasks are created, you can close
your client session and restart it, and your job still resides in the storage location. You can find
existing jobs using the findJob function or the Jobs property of the cluster object.

Create a Cluster Object

You use the parcluster function to create an object in your local MATLAB session representing the
local scheduler.

parallel.defaultClusterProfile('local');
c = parcluster();

Create a Job

You create a job with the createJob function. This statement creates a job in the cluster job storage
location and creates the job object job1in the client session. If you omit the semicolon at the end of
the command, it displays some information about the job.

job1 = createJob(c)
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 Job

    Properties:

                   ID: 2
                 Type: Independent
             Username: eng864
                State: pending
           SubmitTime: 
            StartTime: 
     Running Duration: 0 days 0h 0m 0s

      AutoAttachFiles: true
  Auto Attached Files: List files
        AttachedFiles: {}
      AdditionalPaths: {}

    Associated Tasks:

       Number Pending: 0
       Number Running: 0
      Number Finished: 0
    Task ID of Errors: []

TheState property of the job is pending. This means that the job has not yet been submitted
(queued) for running, so you can now add tasks to it.

The scheduler display now indicates the existence of your job, which is the pending one, as appears in
this partial listing:

c

 Local Cluster
 
   Associated Jobs

                  Number Pending: 1
                   Number Queued: 0
                  Number Running: 0
                 Number Finished: 0

Create Tasks

After you have created your job, you can create tasks for the job using the createTask function.
Tasks define the functions to be evaluated by the workers during the running of the job. Often, the
tasks of a job are all identical. In this example, five tasks each generate a 3-by-3 matrix of random
numbers.

createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

The Tasks property of job1 is now a 5-by-1 matrix of task objects.

job1.Tasks

         ID      State    FinishTime  Function  Error
 -----------------------------------------------------
    1     1    pending                   @rand       
    2     2    pending                   @rand       
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    3     3    pending                   @rand       
    4     4    pending                   @rand       
    5     5    pending                   @rand        

Submit a Job to the Cluster

To run your job and have its tasks evaluated, you submit the job to the cluster with the submit
function.

submit(job1)

The local scheduler starts the workers on your machine, and distributes the tasks of job1 to these
workers for evaluation.

Fetch the Job Results

The results of each task evaluation are stored in the task object OutputArguments property as a cell
array. After waiting for the job to complete, use the function fetchOutputs to retrieve the results
from all the tasks in the job.

wait(job1)
results = fetchOutputs(job1);

Display the results from each task.

results{1:5}

    0.9501    0.4860    0.4565
    0.2311    0.8913    0.0185
    0.6068    0.7621    0.8214

    0.4447    0.9218    0.4057
    0.6154    0.7382    0.9355
    0.7919    0.1763    0.9169

    0.4103    0.3529    0.1389
    0.8936    0.8132    0.2028
    0.0579    0.0099    0.1987

    0.6038    0.0153    0.9318
    0.2722    0.7468    0.4660
    0.1988    0.4451    0.4186

    0.8462    0.6721    0.6813
    0.5252    0.8381    0.3795
    0.2026    0.0196    0.8318

After the job is complete, you can repeat the commands to examine the updated status of the cluster,
job, and task objects:

c
job1
job1.Tasks

Local Cluster Behavior
The local scheduler runs in the MATLAB client session, so you do not have to start any separate
scheduler or MATLAB Job Scheduler process for the local scheduler. When you submit a job to the
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local cluster, the scheduler starts a MATLAB worker for each task in the job. You can do this for as
many workers as allowed by the local profile. If your job has more tasks than allowed workers, the
scheduler waits for one of the current tasks to complete before starting another MATLAB worker to
evaluate the next task. You can modify the number of allowed workers in the local cluster profile. If
not specified, the default is to run only as many workers as computational cores on the machine.

The local cluster has no interaction with any other scheduler or MATLAB Job Scheduler, nor with any
other workers that can also be running on your client machine under the mjs service. Multiple
MATLAB sessions on your computer can each start its own local scheduler with its own workers, but
these groups do not interact with each other.

When you end your MATLAB client session, its local scheduler and any workers that happen to be
running also stop immediately.
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Program Independent Jobs for a Supported Scheduler
In this section...
“Create and Run Jobs” on page 6-7
“Manage Objects in the Scheduler” on page 6-11

Create and Run Jobs
This section details the steps of a typical programming session with Parallel Computing Toolbox
software using a supported job scheduler on a cluster. Supported schedulers include the MATLAB Job
Scheduler, Platform LSF (Load Sharing Facility), Microsoft Windows HPC Server (including CCS),
PBS Pro, or a TORQUE scheduler.

This section assumes that you have a MATLAB Job Scheduler, LSF, PBS Pro, TORQUE, or Windows
HPC Server (including CCS and HPC Server 2008) scheduler installed and running on your network.
With all of these cluster types, the basic job programming sequence is the same:

• “Define and Select a Profile” on page 6-7
• “Find a Cluster” on page 6-8
• “Create a Job” on page 6-8
• “Create Tasks” on page 6-9
• “Submit a Job to the Job Queue” on page 6-10
• “Retrieve Job Results” on page 6-10

Note that the objects that the client session uses to interact with the MATLAB Job Scheduler are only
references to data that is actually contained in the MATLAB Job Scheduler, not in the client session.
After jobs and tasks are created, you can close your client session and restart it, and your job is still
stored in the MATLAB Job Scheduler. You can find existing jobs using the findJob function or the
Jobs property of the MATLAB Job Scheduler cluster object.

Define and Select a Profile

A cluster profile identifies the type of cluster to use and its specific properties. In a profile, you define
how many workers a job can access, where the job data is stored, where MATLAB is accessed and
many other cluster properties. The exact properties are determined by the type of cluster.

The step in this section all assume the profile with the name MyProfile identifies the cluster you want
to use, with all necessary property settings. With the proper use of a profile, the rest of the
programming is the same, regardless of cluster type. After you define or import your profile, you can
set it as the default profile in the Profile Manager GUI, or with the command:

parallel.defaultClusterProfile('MyProfile')

A few notes regarding different cluster types and their properties:

Notes In a shared file system, all nodes require access to the folder specified in the cluster object's
JobStorageLocation property.

Because Windows HPC Server requires a shared file system, all nodes require access to the folder
specified in the cluster object's JobStorageLocation property.
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In a shared file system, MATLAB clients on many computers can access the same job data on the
network. Properties of a particular job or task should be set from only one client computer at a time.

When you use an LSF scheduler in a nonshared file system, the scheduler might report that a job is in
the finished state even though the LSF scheduler might not yet have completed transferring the job’s
files.

Find a Cluster

You use the parcluster function to identify a cluster and to create an object representing the
cluster in your local MATLAB session.

To find a specific cluster, user the cluster profile to match the properties of the cluster you want to
use. In this example, MyProfile is the name of the profile that defines the specific cluster.

c = parcluster('MyProfile');

 MJS Cluster

   Properties
                            Name: my_mjs
                         Profile: MyProfile
                        Modified: false
                            Host: node345
                        Username: mylogin

                      NumWorkers: 1
                  NumBusyWorkers: 0
                  NumIdleWorkers: 1

              JobStorageLocation: Database on node345
               ClusterMatlabRoot: C:\apps\matlab
                 OperatingSystem: windows
                AllHostAddresses: 0:0:0:0
                   SecurityLevel: 0 (No security)
          HasSecureCommunication: false

   Associated Jobs

                  Number Pending: 0
                   Number Queued: 0
                  Number Running: 0
                 Number Finished: 0

Create a Job

You create a job with the createJob function. Although this command executes in the client session,
it actually creates the job on the cluster, c, and creates a job object, job1, in the client session.

job1 = createJob(c)

 Job

    Properties:
                   ID: 1
                 Type: Independent
             Username: mylogin
                State: pending
           SubmitTime: 
            StartTime: 
     Running Duration: 0 days 0h 0m 0s
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      AutoAttachFiles: true
  Auto Attached Files: List files
        AttachedFiles: {}
      AdditionalPaths: {}

    Associated Tasks:

       Number Pending: 0
       Number Running: 0
      Number Finished: 0
    Task ID of Errors: []

Note that the job’s State property is pending. This means the job has not been queued for running
yet, so you can now add tasks to it.

The cluster’s display now includes one pending job, as shown in this partial listing:

c

Associated Jobs

                  Number Pending: 1
                   Number Queued: 0
                  Number Running: 0
                 Number Finished: 0

You can transfer files to the worker by using the AttachedFiles property of the job object. For
details, see “Share Code with the Workers” on page 6-13.

Create Tasks

After you have created your job, you can create tasks for the job using the createTask function.
Tasks define the functions to be evaluated by the workers during the running of the job. Often, the
tasks of a job are all identical. In this example, each task will generate a 3-by-3 matrix of random
numbers.

createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});

The Tasks property of job1 is now a 5-by-1 matrix of task objects.

job1.Tasks

         ID       State    FinishTime  Function  Error
 -----------------------------------------------------
    1     1     pending                   @rand       
    2     2     pending                   @rand       
    3     3     pending                   @rand       
    4     4     pending                   @rand       
    5     5     pending                   @rand       

Alternatively, you can create the five tasks with one call to createTask by providing a cell array of
five cell arrays defining the input arguments to each task.

T = createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});
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In this case, T is a 5-by-1 matrix of task objects.

Submit a Job to the Job Queue

To run your job and have its tasks evaluated, you submit the job to the job queue with the submit
function.

submit(job1)

The job manager distributes the tasks of job1 to its registered workers for evaluation.

Each worker performs the following steps for task evaluation:

1 Receive AttachedFiles and AdditionalPaths from the job. Place files and modify the path
accordingly.

2 Run the jobStartup function the first time evaluating a task for this job. You can specify this
function in AttachedFiles or AdditionalPaths. When using a MATLAB Job Scheduler, if the
same worker evaluates subsequent tasks for this job, jobStartup does not run between tasks.

3 Run the taskStartup function. You can specify this function in AttachedFiles or
AdditionalPaths. This runs before every task evaluation that the worker performs, so it could
occur multiple times on a worker for each job.

4 If the worker is part of forming a new parallel pool, run the poolStartup function. (This occurs
when executing parpool or when running other types of jobs that form and use a parallel pool,
such as batch.)

5 Receive the task function and arguments for evaluation.
6 Evaluate the task function, placing the result in the task’s OutputArguments property. Any

error information goes in the task’s Error property.
7 Run the taskFinish function.

Retrieve Job Results

The results of each task's evaluation are stored in that task object’s OutputArguments property as a
cell array. Use the function fetchOutputs to retrieve the results from all the tasks in the job.

wait(job1)
results = fetchOutputs(job1);

Display the results from each task.

results{1:5}

    0.9501    0.4860    0.4565
    0.2311    0.8913    0.0185
    0.6068    0.7621    0.8214

    0.4447    0.9218    0.4057
    0.6154    0.7382    0.9355
    0.7919    0.1763    0.9169

    0.4103    0.3529    0.1389
    0.8936    0.8132    0.2028
    0.0579    0.0099    0.1987

    0.6038    0.0153    0.9318
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    0.2722    0.7468    0.4660
    0.1988    0.4451    0.4186

    0.8462    0.6721    0.6813
    0.5252    0.8381    0.3795
    0.2026    0.0196    0.8318

Manage Objects in the Scheduler
Because all the data of jobs and tasks resides in the cluster job storage location, these objects
continue to exist even if the client session that created them has ended. The following sections
describe how to access these objects and how to permanently remove them:

• “What Happens When the Client Session Ends” on page 6-11
• “Recover Objects” on page 6-11
• “Reset Callback Properties (MATLAB Job Scheduler Only)” on page 6-12
• “Remove Objects Permanently” on page 6-12

What Happens When the Client Session Ends

When you close the client session of Parallel Computing Toolbox software, all of the objects in the
workspace are cleared. However, the objects in MATLAB Parallel Server software or other cluster
resources remain in place. When the client session ends, only the local reference objects are lost, not
the actual job and task data in the cluster.

Therefore, if you have submitted your job to the cluster job queue for execution, you can quit your
client session of MATLAB, and the job will be executed by the cluster. You can retrieve the job results
later in another client session.

Recover Objects

A client session of Parallel Computing Toolbox software can access any of the objects in MATLAB
Parallel Server software, whether the current client session or another client session created these
objects.

You create cluster objects in the client session by using the parcluster function.

c = parcluster('MyProfile');

When you have access to the cluster by the object c, you can create objects that reference all those
job contained in that cluster. The jobs are accessible in cluster object’s Jobs property, which is an
array of job objects:

all_jobs = c.Jobs

You can index through the array all_jobs to locate a specific job.

Alternatively, you can use the findJob function to search in a cluster for any jobs or a particular job
identified by any of its properties, such as its State.

all_jobs = findJob(c);
finished_jobs = findJob(c,'State','finished')

This command returns an array of job objects that reference all finished jobs on the cluster c.
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Reset Callback Properties (MATLAB Job Scheduler Only)

When restarting a client session, you lose the settings of any callback properties (for example, the
FinishedFcn property) on jobs or tasks. These properties are commonly used to get notifications in
the client session of state changes in their objects. When you create objects in a new client session
that reference existing jobs or tasks, you must reset these callback properties if you intend to use
them.

Remove Objects Permanently

Jobs in the cluster continue to exist even after they are finished, and after the MATLAB Job Scheduler
is stopped and restarted. The ways to permanently remove jobs from the cluster are explained in the
following sections:

• “Delete Selected Objects” on page 6-12
• “Start a MATLAB Job Scheduler from a Clean State” on page 6-12

Delete Selected Objects

From the command line in the MATLAB client session, you can call the delete function for any job or
task object. If you delete a job, you also remove all tasks contained in that job.

For example, find and delete all finished jobs in your cluster that belong to the user joep.

c = parcluster('MyProfile')
finished_jobs = findJob(c,'State','finished','Username','joep')
delete(finished_jobs)
clear finished_jobs

The delete function permanently removes these jobs from the cluster. The clear function removes
the object references from the local MATLAB workspace.

Start a MATLAB Job Scheduler from a Clean State

When a MATLAB Job Scheduler starts, by default it starts so that it resumes its former session with
all jobs intact. Alternatively, a MATLAB Job Scheduler can start from a clean state with all its former
history deleted. Starting from a clean state permanently removes all job and task data from the
MATLAB Job Scheduler of the specified name on a particular host.

As a network administration feature, the -clean flag of the startjobmanager script is described in
“Start in a Clean State” (MATLAB Parallel Server) in the MATLAB Parallel Server System
Administrator's Guide.
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Share Code with the Workers
Because the tasks of a job are evaluated on different machines, each machine must have access to all
the files needed to evaluate its tasks. The basic mechanisms for sharing code are explained in the
following sections:

In this section...
“Workers Access Files Directly” on page 6-13
“Pass Data to and from Worker Sessions” on page 6-14
“Pass MATLAB Code for Startup and Finish” on page 6-15

Note For an example that shows how to share code with workers using batch, see “Run Batch Job
and Access Files from Workers” on page 10-26.

Workers Access Files Directly
If the workers all have access to the same drives on the network, they can access the necessary files
that reside on these shared resources. This is the preferred method for sharing data, as it minimizes
network traffic.

You must define each worker session’s search path so that it looks for files in the right places. You can
define the path:

• By using the job’s AdditionalPaths property. This is the preferred method for setting the path,
because it is specific to the job.

AdditionalPaths identifies folders to be added to the top of the command search path of
worker sessions for this job. If you also specify AttachedFiles, the AttachedFiles are above
AdditionalPaths on the workers’ path.

When you specify AdditionalPaths at the time of creating a job, the settings are combined with
those specified in the applicable cluster profile. Setting AdditionalPaths on a job object after it
is created does not combine the new setting with the profile settings, but overwrites existing
settings for that job.

AdditionalPaths is empty by default. For a mixed-platform environment, the character vectors
can specify both UNIX and Microsoft Windows style paths; those setting that are not appropriate
or not found for a particular machine generate warnings and are ignored.

This example sets the MATLAB worker path in a mixed-platform environment to use functions in
both the central repository /central/funcs and the department archive /dept1/funcs, which
each also have a Windows UNC path.

c = parcluster(); % Use default
job1 = createJob(c);
ap = {'/central/funcs','/dept1/funcs', ...
     '\\OurDomain\central\funcs','\\OurDomain\dept1\funcs'};
job1.AdditionalPaths = ap;

• By putting the path command in any of the appropriate startup files for the worker:
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• matlabroot\toolbox\local\startup.m
• matlabroot\toolbox\parallel\user\jobStartup.m
• matlabroot\toolbox\parallel\user\taskStartup.m

Access to these files can be passed to the worker by the job’s AttachedFiles or
AdditionalPaths property. Otherwise, the version of each of these files that is used is the one
highest on the worker’s path.

Access to files among shared resources can depend upon permissions based on the user name. You
can set the user name with which the MATLAB Job Scheduler and worker services of MATLAB
Parallel Server software run by setting the MJSUSER value in the mjs_def file before starting the
services. For Microsoft Windows operating systems, there is also MJSPASS for providing the account
password for the specified user. For an explanation of service default settings and the mjs_def file,
see “Define Script Defaults” (MATLAB Parallel Server) in the MATLAB Parallel Server System
Administrator's Guide.

Pass Data to and from Worker Sessions
A number of properties on task and job objects are designed for passing code or data from client to
scheduler to worker, and back. This information could include MATLAB code necessary for task
evaluation, or the input data for processing or output data resulting from task evaluation. The
following properties facilitate this communication:

• InputArguments — This property of each task contains the input data you specified when
creating the task. This data gets passed into the function when the worker performs its evaluation.

• OutputArguments — This property of each task contains the results of the function’s evaluation.
• JobData — This property of the job object contains data that gets sent to every worker that

evaluates tasks for that job. This property works efficiently because the data is passed to a worker
only once per job, saving time if that worker is evaluating more than one task for the job. (Note:
Do not confuse this property with the UserData property on any objects in the MATLAB client.
Information in UserData is available only in the client, and is not available to the scheduler or
workers.)

• AttachedFiles — This property of the job object is a cell array in which you manually specify all
the folders and files that get sent to the workers. On the worker, the files are installed and the
entries specified in the property are added to the search path of the worker session.

AttachedFiles contains a list of folders and files that the worker need to access for evaluating a
job’s tasks. The value of the property (empty by default) is defined in the cluster profile or in the
client session. You set the value for the property as a cell array of character vectors. Each
character vector is an absolute or relative pathname to a folder or file. (Note: If these files or
folders change while they are being transferred, or if any of the folders are empty, a failure or
error can result. If you specify a pathname that does not exist, an error is generated.)

The first time a worker evaluates a task for a particular job, the scheduler passes to the worker
the files and folders in the AttachedFiles property. On the worker machine, a folder structure is
created that is exactly the same as that accessed on the client machine where the property was
set. Those entries listed in the property value are added to the top of the command search path in
the worker session. (Subfolders of the entries are not added to the path, even though they are
included in the folder structure.) To find out where the files are placed on the worker machine, use
the function getAttachedFilesFolder in code that runs on the worker.
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When the worker runs subsequent tasks for the same job, it uses the folder structure already set
up by the job’s AttachedFiles property for the first task it ran for that job.

When you specify AttachedFiles at the time of creating a job, the settings are combined with
those specified in the applicable profile. Setting AttachedFiles on a job object after it is created
does not combine the new setting with the profile settings, but overwrites the existing settings for
that job.

The transfer of AttachedFiles occurs for each worker running a task for that particular job on a
machine, regardless of how many workers run on that machine. Normally, the attached files are
deleted from the worker machine when the job is completed, or when the next job begins.

• AutoAttachFiles — This property of the job object uses a logical value to specify that you want
MATLAB to perform an analysis on the task functions in the job and on manually attached files to
determine which code files are necessary for the workers, and to automatically send those files to
the workers. You can set this property value in a cluster profile using the Profile Manager, or you
can set it programmatically on a job object at the command line.

c = parcluster();
j = createJob(c);
j.AutoAttachFiles = true;

The supported code file formats for automatic attachment are MATLAB files (.m extension), P-code
files (.p), and MEX-files (.mex). Note that AutoAttachFiles does not include data files for your
job; use the AttachedFiles property to explicitly transfer these files to the workers.

Use listAutoAttachedFiles to get a listing of the code files that are automatically attached to
a job.

If the AutoAttachFiles setting is true for the cluster profile used when starting a parallel pool,
MATLAB performs an analysis on spmd blocks, parfor-loops, and other attached files to
determine what other code files are necessary for execution, then automatically attaches those
files to the parallel pool so that the code is available to the workers.

Note There is a default maximum amount of data that can be sent in a single call for setting
properties. This limit applies to the OutputArguments property as well as to data passed into a job
as input arguments or AttachedFiles. If the limit is exceeded, you get an error message. For more
information about this data transfer size limit, see “Attached Files Size Limitations” on page 5-42.

Pass MATLAB Code for Startup and Finish
As a session of MATLAB, a worker session executes its startup.m file each time it starts. You can
place the startup.m file in any folder on the worker’s MATLAB search path, such as toolbox/
parallel/user.

These additional files can initialize and clean up a worker session as it begins or completes
evaluations of tasks for a job:

• jobStartup.m automatically executes on a worker when the worker runs its first task of a job.
• taskStartup.m automatically executes on a worker each time the worker begins evaluation of a

task.
• poolStartup.m automatically executes on a worker each time the worker is included in a newly

started parallel pool.
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• taskFinish.m automatically executes on a worker each time the worker completes evaluation of
a task.

Empty versions of these files are provided in the folder:

matlabroot/toolbox/parallel/user

You can edit these files to include whatever MATLAB code you want the worker to execute at the
indicated times.

Alternatively, you can create your own versions of these files and pass them to the job as part of the
AttachedFiles property, or include the path names to their locations in the AdditionalPaths
property.

The worker gives precedence to the versions provided in the AttachedFiles property, then to those
pointed to in the AdditionalPaths property. If any of these files is not included in these properties,
the worker uses the version of the file in the toolbox/parallel/user folder of the worker’s
MATLAB installation.

See Also

Related Examples
• “Run Batch Job and Access Files from Workers”

6 Program Independent Jobs

6-16



Plugin Scripts for Generic Schedulers
In this section...
“Sample Plugin Scripts” on page 6-17
“Writing Custom Plugin Scripts” on page 6-19
“Adding User Customization” on page 6-24
“Managing Jobs with Generic Scheduler” on page 6-25
“Submitting from a Remote Host” on page 6-26
“Submitting without a Shared File System” on page 6-27

The generic scheduler interface provides complete flexibility to configure the interaction of the
MATLAB client, MATLAB workers, and a third-party scheduler. The plugin scripts define how
MATLAB interacts with your setup.

The following table lists the supported plugin script functions and the stage at which they are
evaluated:

File Name Stage
independentSubmitFcn.m Submitting an independent job
communicatingSubmitFcn.m Submitting a communicating job
getJobStateFcn.m Querying the state of a job
canceJobFcn.m Canceling a job
cancelTaskFcn.m Canceling a task
deleteJobFcn.m Deleting a job
deleteTaskFcn.m Deleting a task
postConstructFcn.m After creating a parallel.cluster.Generic

instance

These plugin scripts are evaluated only if they have the expected file name and are located in the
folder specified by the PluginScriptsLocation property of the cluster. For more information about
how to configure a generic cluster profile, see “Configure Using the Generic Scheduler Interface”
(MATLAB Parallel Server).

Note The independentSubmitFcn.m must exist to submit an independent job, and the
communicatingSubmitFcn.m must exist to submit a communicating job.

Sample Plugin Scripts
To support usage of the generic scheduler interface, plugin scripts are available for the following
third-party schedulers:

• IBM Spectrum LSF
• Grid Engine family
• PBS family
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• SLURM

Each installer provides scripts for three possible submission modes:

• Shared – The client can submit directly to the scheduler, and the client and the cluster nodes (or
machines) have a shared file system.

• Remote – The client and cluster nodes have a shared file system, but the client machine cannot
submit directly to the scheduler, such as when the client utilities of the scheduler are not installed.
This mode uses the ssh protocol to submit commands to the scheduler using a remote host.

• Nonshared – The client and cluster nodes do not have a shared file system. This mode uses the
ssh protocol to submit commands to the scheduler using a remote host, and it uses the sftp
protocol to copy job and task files to the cluster file system.

Each submission mode has its own subfolder within the installation folder. This subfolder contains a
README file that provides specific instructions on how to use the scripts. Before using the scripts,
decide which submission mode describes your network setup.

To run the installer, download the appropriate support package for your scheduler, and open it in your
MATLAB client. The installer includes a wizard to guide you through creating a cluster profile for
your cluster configuration.

If you want to customize the behavior of the plugin scripts, you can set additional properties, such as
AdditionalSubmitArgs. For more information, see “Customize Behavior of Sample Plugin Scripts”
(MATLAB Parallel Server).

If your scheduler or cluster configuration is not supported by one of the support packages, it is
recommended that you modify the scripts of one of these packages. For more information on how to
write a set of plugin scripts for generic schedulers, see “Writing Custom Plugin Scripts” on page 6-
19.

Wrapper Scripts

The sample plugin scripts use wrapper scripts to simplify the implementation of
independentSubmitFcn.m and communicatingSubmitFcn.m. These scripts are not required,
however, using them is a good practice to make your code more readable. This table describes these
scripts:

File name Description
independentJobWrapper.sh Used in independentSubmitFcn.m to embed a

call to the MATLAB executable with the
appropriate arguments. It uses environment
variables for the location of the executable and
its arguments. For an example of its use, see
“Sample script for a SLURM scheduler” on page
6-20.

communicatingJobWrapper.sh Used in communicatingSubmitFcn.m to
distribute a communicating job in your cluster.
This script implements the steps in “Submit
scheduler job to launch MPI process” on page 6-
21. For an example of its use, see “Sample script
for a SLURM scheduler” on page 6-22.

6 Program Independent Jobs

6-18

https://www.mathworks.com/matlabcentral/fileexchange/52807


Writing Custom Plugin Scripts

Note When writing your own plugin scripts, it is a good practice to start by modifying one of the
sample plugin scripts that most closely matches your setup (see “Sample Plugin Scripts” on page 6-
17).

independentSubmitFcn

When you submit an independent job to a generic cluster, the independentSubmitFcn.m function
executes in the MATLAB client session.

The declaration line of this function must be:

function independentSubmitFcn(cluster,job,environmentProperties)

Each task in a MATLAB independent job corresponds to a single job on your scheduler. The purpose
of this function is to submit N jobs to your third-party scheduler, where N is the number of tasks in the
independent job. Each of these jobs must:

1 Set the five environment variables required by the worker MATLAB to identify the individual task
to run. For more information, see “Configure the worker environment” on page 6-19.

2 Call the appropriate MATLAB executable to start the MATLAB worker and run the task. For more
information, see “Submit scheduler jobs to run MATLAB workers” on page 6-20.

Configure the worker environment

This table identifies the five environment variables and values that must be set on the worker
MATLAB to run an individual task:

Environment Variable Name Environment Variable Value
PARALLEL_SERVER_DECODE_FUNCTION 'parallel.cluster.generic.independentD

ecodeFcn'
PARALLEL_SERVER_STORAGE_CONSTRUCTOR environmentProperties.StorageConstruct

or
PARALLEL_SERVER_STORAGE_LOCATION • If you have a shared file system between the

client and cluster nodes, use
environmentProperties.StorageLocati
on .

• If you do not have a shared file system
between the client and cluster nodes, select a
folder visible to all cluster nodes. For
instructions on copying job and task files
between client and cluster nodes, see
“Submitting without a Shared File System” on
page 6-27.

PARALLEL_SERVER_JOB_LOCATION environmentProperties.JobLocation
PARALLEL_SERVER_TASK_LOCATION environmentProperties.TaskLocation{n}

for the nth task
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Many schedulers support copying the client environment as part of the submission command. If so,
you can set the previous environment variables in the client, so the scheduler can copy them to the
worker environment. If not, you must modify your submission command to forward these variables.

Submit scheduler jobs to run MATLAB workers

Once the five required parameters for a given job and task are defined on a worker, the task is run by
calling the MATLAB executable with suitable arguments. The MATLAB executable to call is defined in
environmentProperties.MatlabExecutable. The arguments to pass are defined in
environmentProperties.MatlabArguments.

Note If you cannot submit directly to your scheduler from the client machine, see “Submitting from a
Remote Host” on page 6-26 for instructions on how to submit using ssh.

Sample script for a SLURM scheduler

This script shows a basic submit function for a SLURM scheduler with a shared file system. For a
more complete example, see “Sample Plugin Scripts” on page 6-17.
function independentSubmitFcn(cluster,job,environmentProperties)
    % Specify the required environment variables.
    setenv('PARALLEL_SERVER_DECODE_FUNCTION', 'parallel.cluster.generic.independentDecodeFcn');
    setenv('PARALLEL_SERVER_STORAGE_CONSTRUCTOR', environmentProperties.StorageConstructor);
    setenv('PARALLEL_SERVER_STORAGE_LOCATION', environmentProperties.StorageLocation);
    setenv('PARALLEL_SERVER_JOB_LOCATION', environmentProperties.JobLocation);
    
    % Specify the MATLAB executable and arguments to run on the worker.
    % These are used in the independentJobWrapper.sh script.
    setenv('PARALLEL_SERVER_MATLAB_EXE', environmentProperties.MatlabExecutable);
    setenv('PARALLEL_SERVER_MATLAB_ARGS', environmentProperties.MatlabArguments);
    
    for ii = 1:environmentProperties.NumberOfTasks
        % Specify the environment variable required to identify which task to run.
        setenv('PARALLEL_SERVER_TASK_LOCATION', environmentProperties.TaskLocations{ii});
        % Specify the command to submit the job to the SLURM scheduler.
        % SLURM will automatically copy environment variables to workers.
        commandToRun = 'sbatch --ntasks=1 independentJobWrapper.sh';
        [cmdFailed, cmdOut] = system(commandToRun);
    end
end
 

The previous example submits a simple bash script, independentJobWrapper.sh, to the scheduler.
The independentJobWrapper.sh script embeds the MATLAB executable and arguments using
environment variables:

#!/bin/sh
# PARALLEL_SERVER_MATLAB_EXE - the MATLAB executable to use
# PARALLEL_SERVER_MATLAB_ARGS - the MATLAB args to use
exec "${PARALLEL_SERVER_MATLAB_EXE}" ${PARALLEL_SERVER_MATLAB_ARGS}

communicatingSubmitFcn

When you submit a communicating job to a generic cluster, the communicatingSubmitFcn.m
function executes in the MATLAB client session.

The declaration line of this function must be:

function communicatingSubmitFcn(cluster,job,environmentProperties)

The purpose of this function is to submit a single job to your scheduler. This job must:
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1 Set the four environment variables required by the MATLAB workers to identify the job to run.
For more information, see “Configure the worker environment” on page 6-21.

2 Call MPI to distribute your job to N MATLAB workers. N corresponds to the maximum value
specified in the NumWorkersRange property of the MATLAB job. For more information, see
“Submit scheduler job to launch MPI process” on page 6-21.

Configure the worker environment

This table identifies the four environment variables and values that must be set on the worker
MATLAB to run a task of a communicating job:

Environment Variable Name Environment Variable Value
PARALLEL_SERVER_DECODE_FUNCTION 'parallel.cluster.generic.communicatin

gDecodeFcn'
PARALLEL_SERVER_STORAGE_CONSTRUCTOR environmentProperties.StorageConstruct

or
PARALLEL_SERVER_STORAGE_LOCATION • If you have a shared file system between the

client and cluster nodes, use
environmentProperties.StorageLocati
on .

• If you do not have a shared file system
between the client and cluster nodes, select a
folder which exists on all cluster nodes. For
instructions on copying job and task files
between client and cluster nodes, see
“Submitting without a Shared File System” on
page 6-27.

PARALLEL_SERVER_JOB_LOCATION environmentProperties.JobLocation

Many schedulers support copying the client environment as part of the submission command. If so,
you can set the previous environment variables in the client, so the scheduler can copy them to the
worker environment. If not, you must modify your submission command to forward these variables.

Submit scheduler job to launch MPI process

After you define the four required parameters for a given job, run your job by launching N worker
MATLAB processes using mpiexec. mpiexec is software shipped with the Parallel Computing
Toolbox that implements the Message Passing Interface (MPI) standard to allow communication
between the worker MATLAB processes. For more information about mpiexec, see the MPICH home
page.

To run your job, you must submit a job to your scheduler, which executes the following steps. Note
that matlabroot refers to the MATLAB installation location on your worker nodes.

1 Request N processes from the scheduler. N corresponds to the maximum value specified in the
NumWorkersRange property of the MATLAB job.

2 Call mpiexec to start worker MATLAB processes. The number of worker MATLAB processes to
start on each host should match the number of processes allocated by your scheduler. The
mpiexec executable is located at matlabroot/bin/mw_mpiexec.
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The mpiexec command automatically forwards environment variables to the launched processes.
Therefore, ensure the environment variables listed in “Configure the worker environment” on
page 6-21 are set before running mpiexec.

To learn more about options for mpiexec, see Using the Hydra Process Manager.

Note For a complete example of the previous steps, see the communicatingJobWrapper.sh script
provided with any of the sample plugin scripts in “Sample Plugin Scripts” on page 6-17. Use this
script as a starting point if you need to write your own script.

Sample script for a SLURM scheduler

The following script shows a basic submit function for a SLURM scheduler with a shared file system.

The submitted job is contained in a bash script, communicatingJobWrapper.sh. This script
implements the relevant steps in “Submit scheduler job to launch MPI process” on page 6-21 for a
SLURM scheduler. For a more complete example, see “Sample Plugin Scripts” on page 6-17.
function communicatingSubmitFcn(cluster,job,environmentProperties)
    % Specify the four required environment variables.
    setenv('PARALLEL_SERVER_DECODE_FUNCTION', 'parallel.cluster.generic.communicatingDecodeFcn');
    setenv('PARALLEL_SERVER_STORAGE_CONSTRUCTOR', environmentProperties.StorageConstructor);
    setenv('PARALLEL_SERVER_STORAGE_LOCATION', environmentProperties.StorageLocation);
    setenv('PARALLEL_SERVER_JOB_LOCATION', environmentProperties.JobLocation);
    
    % Specify the MATLAB executable and arguments to run on the worker.
    % Specify the location of the MATLAB install on the cluster nodes.
    % These are used in the communicatingJobWrapper.sh script.
    setenv('PARALLEL_SERVER_MATLAB_EXE', environmentProperties.MatlabExecutable);
    setenv('PARALLEL_SERVER_MATLAB_ARGS', environmentProperties.MatlabArguments);
    setenv('PARALLEL_SERVER_CMR', cluster.ClusterMatlabRoot);
    
    numberOfTasks = environmentProperties.NumberOfTasks;
    
    % Specify the command to submit a job to the SLURM scheduler which
    % requests as many processes as tasks in the job.
    % SLURM will automatically copy environment variables to workers.
    commandToRun = sprintf('sbatch --ntasks=%d communicatingJobWrapper.sh', numberOfTasks);
    [cmdFailed, cmdOut] = system(commandToRun);
end

getJobStateFcn

When you query the state of a job created with a generic cluster, the getJobStateFcn.m function
executes in the MATLAB client session. The declaration line of this function must be:

function state = getJobStateFcn(cluster,job,state)

When using a third-party scheduler, it is possible that the scheduler can have more up-to-date
information about your jobs than what is available to the toolbox from the local job storage location.
This situation is especially true if using a nonshared file system, where the remote file system could
be slow in propagating large data files back to your local data location.

To retrieve that information from the scheduler, add a function called getJobStateFcn.m to the
PluginScriptsLocation of your cluster.

The state passed into this function is the state derived from the local job storage. The body of this
function can then query the scheduler to determine a more accurate state for the job and return it in
place of the stored state. The function you write for this purpose must return a valid value for the
state of a job object. Allowed values are ‘pending’, ‘queued’, ‘running’, ‘finished’, or
‘failed’.
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For instructions on pairing MATLAB tasks with their corresponding scheduler job ID, see “Managing
Jobs with Generic Scheduler” on page 6-25.

cancelJobFcn

When you cancel a job created with a generic cluster, the cancelJobFcn.m function executes in the
MATLAB client session. The declaration line of this function must be:

function OK = cancelJobFcn(cluster,job)

When you cancel a job created using the generic scheduler interface, by default this action affects
only the job data in storage. To cancel the corresponding jobs on your scheduler, you must provide
instructions on what to do and when to do it to the scheduler. To achieve this, add a function called
cancelJobFcn.m to the PluginScriptsLocation of your cluster.

The body of this function can then send a command to the scheduler, for example, to remove the
corresponding jobs from the queue. The function must return a logical scalar indicating the success
or failure of canceling the jobs on the scheduler.

For instructions on pairing MATLAB tasks with their corresponding scheduler job ID, see “Managing
Jobs with Generic Scheduler” on page 6-25.

cancelTaskFcn

When you cancel a task created with a generic cluster, the cancelTaskFcn.m function executes in
the MATLAB client session. The declaration line of this function must be:

function OK = cancelTaskFcn(cluster,task)

When you cancel a task created using the generic scheduler interface, by default, this affects only the
task data in storage. To cancel the corresponding job on your scheduler, you must provide
instructions on what to do and when to do it to the scheduler. To achieve this, add a function called
cancelTaskFcn.m to the PluginScriptsLocation of your cluster.

The body of this function can then send a command to the scheduler, for example, to remove the
corresponding job from the scheduler queue. The function must return a logical scalar indicating the
success or failure of canceling the job on the scheduler.

For instructions on pairing MATLAB tasks with their corresponding scheduler job ID, see “Managing
Jobs with Generic Scheduler” on page 6-25.

deleteJobFcn

When you delete a job created with a generic cluster, the deleteJobFcn.m function executes in the
MATLAB client session. The declaration line of this function must be:

function deleteTaskFcn(cluster,task)

When you delete a job created using the generic scheduler interface, by default, this affects only the
job data in storage. To remove the corresponding jobs on your scheduler, you must provide
instructions on what to do and when to do it to the scheduler. To achieve this, add a function called
deleteJobFcn.m to the PluginScriptsLocation of your cluster.

The body of this function can then send a command to the scheduler, for example, to remove the
corresponding jobs from the scheduler queue.

 Plugin Scripts for Generic Schedulers

6-23



For instructions on pairing MATLAB tasks with their corresponding scheduler job ID, see “Managing
Jobs with Generic Scheduler” on page 6-25.

deleteTaskFcn

When you delete a task created with a generic cluster, the deleteTaskFcn.m function executes in
the MATLAB client session. The declaration line of this function must be:

function deleteTaskFcn(cluster,task)

When you delete a task created using the generic scheduler interface, by default, this affects only the
task data in storage. To remove the corresponding job on your scheduler, you must provide
instructions on what to do and when to do it to the scheduler. To achieve this, add a function called
deleteTaskFcn.m to the PluginScriptsLocation of your cluster.

The body of this function can then send a command to the scheduler, for example, to remove the
corresponding job from the scheduler queue.

For instructions on pairing MATLAB tasks with their corresponding scheduler job ID, see “Managing
Jobs with Generic Scheduler” on page 6-25.

postConstructFcn

After you create an instance of your cluster in MATLAB, the postConstructFcn.m function
executes in the MATLAB client session. For example, the following line of code creates an instance of
your cluster and runs the postConstructFcn function associated with the ‘myProfile’ cluster
profile:

c = parcluster('myProfile');

The declaration line of the postConstructFcn function must be:

function postConstructFcn(cluster)

If you need to perform custom configuration of your cluster before its use, add a function called
postConstructFcn.m to the PluginScriptsLocation of your cluster. The body of this function
can contain any extra setup steps you require.

Adding User Customization
If you need to modify the functionality of your plugin scripts at run time, then use the
AdditionalProperties property of the generic scheduler interface.

As an example, consider the SLURM scheduler. The submit command for SLURM accepts a –-
nodelist argument that allows you to specify the nodes you want to run on. You can change the
value of this argument without having to modify your plugin scripts. To add this functionality, include
the following code pattern in your independentSubmitFcn.m and communicatingSubmitFcn.m
scripts:

% Basic SLURM submit command
submitCommand = 'sbatch';
 
% Check if property is defined
if isprop(cluster.AdditionalProperties, 'NodeList')
    % Add appropriate argument and value to submit string
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    submitCommand = [submitCommand ' --nodelist=' cluster.AdditionalProperties.NodeList];
end 

For an example of how to use this coding pattern, see the nonshared submit functions of the scripts in
“Sample Plugin Scripts” on page 6-17.

Setting AdditionalProperties from the Cluster Profile Manager

With the modification to your scripts in the previous example, you can add an AdditionalProperties
entry to your generic cluster profile to specify a list of nodes to use. This provides a method of
documenting customization added to your plugin scripts for anyone you share the cluster profile with.

To add the NodeList property to your cluster profile:

1 Start the Cluster Profile Manager from the MATLAB desktop by selecting Parallel > Manage
Cluster Profiles.

2 Select the profile for your generic cluster, and click Edit.
3 Navigate to the AdditionalProperties table, and click Add.
4 Enter NodeList as the Name.
5 Set String as the Type.
6 Set the Value to the list of nodes.

Setting AdditionalProperties from the MATLAB Command Line

With the modification to your scripts in “Adding User Customization” on page 6-24, you can edit the
list of nodes from the MATLAB command line by setting the appropriate property of the cluster object
before submitting a job:

c = parcluster;
c.AdditionalProperties.NodeList = 'gpuNodeName';
j = c.batch('myScript'); 

Display the AdditionalProperties object to see all currently defined properties and their values:

>> c.AdditionalProperties
ans = 
  AdditionalProperties with properties:
                 ClusterHost: 'myClusterHost'
                    NodeList: 'gpuNodeName'
    RemoteJobStorageLocation: '/tmp/jobs'

Managing Jobs with Generic Scheduler
The first requirement for job management is to identify the jobs on the scheduler corresponding to a
MATLAB job object. When you submit a job to the scheduler, the command that does the submission
in your submit function can return some data about the job from the scheduler. This data typically
includes a job ID. By storing that scheduler job ID with the MATLAB job object, you can later refer to
the scheduler job by this job ID when you send management commands to the scheduler. Similarly,
you can store a map of MATLAB task IDs to scheduler job IDs to help manage individual tasks. The
toolbox function that stores this cluster data is setJobClusterData.
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Save Job Scheduler Data

This example shows how to modify the independentSubmitFcn.m function to parse the output of
each command submitted to a SLURM scheduler. You can use regular expressions to extract the
scheduler job ID for each task and then store it using setJobClusterData.

% Pattern to extract scheduler job ID from SLURM sbatch output
searchPattern = '.*Submitted batch job ([0-9]+).*';
 
jobIDs = cell(numberOfTasks, 1);
for ii = 1:numberOfTasks
    setenv('PARALLEL_SERVER_TASK_LOCATION', environmentProperties.TaskLocations{ii});
    commandToRun = 'sbatch --ntasks=1 independentJobWrapper.sh';
    [cmdFailed, cmdOut] = system(commandToRun);
    jobIDs{ii} = regexp(cmdOut, searchPattern, 'tokens', 'once');
end
 
% set the job IDs on the job cluster data
cluster.setJobClusterData(job, struct('ClusterJobIDs', {jobIDs}));

Retrieve Job Scheduler Data

This example modifies the cancelJobFcn.m to cancel the corresponding jobs on the SLURM
scheduler. The example uses getJobClusterData to retrieve job scheduler data.

function OK = cancelJobFcn(cluster, job)

% Get the scheduler information for this job
data = cluster.getJobClusterData(job);
jobIDs = data.ClusterJobIDs;

for ii = 1:length(jobIDs)
    % Tell the SLURM scheduler to cancel the job
    commandToRun = sprintf('scancel ''%s''', jobIDs{ii});
    [cmdFailed, cmdOut] = system(commandToRun);
end

OK = true;

Submitting from a Remote Host
If the MATLAB client is unable to submit directly to your scheduler, use
parallel.cluster.RemoteClusterAccess to establish a connection and run commands on a
remote host.

This object uses the ssh protocol, and hence requires an ssh daemon service running on the remote
host. To establish a connection, you must either provide a user name and password for the remote
host, or a valid identity file.

The following code executes a command on a remote host, remoteHostname, as the user, user.

% This will prompt for the password of user
access = parallel.cluster.RemoteClusterAccess.getConnectedAccess('remoteHostname', 'user');
% Execute a command on remoteHostname
[cmdFailed, cmdOut] = access.runCommand(commandToRun);
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For an example of plugin scripts using remote host submission, see the remote submission mode in
“Sample Plugin Scripts” on page 6-17.

Submitting without a Shared File System
If the MATLAB client does not have a shared file system with the cluster nodes, use
parallel.cluster.RemoteClusterAccess to establish a connection and copy job and task files
between the client and cluster nodes.

This object uses the ssh protocol, and hence requires an ssh daemon service running on the remote
host. To establish a connection, you must either provide a user name and password for the remote
host or a valid identity file.

When using nonshared submission, you must specify both a local job storage location to use on the
client and a remote job storage location to use on the cluster. The remote job storage location must
be available to all nodes of the cluster.

parallel.cluster.RemoteClusterAccess uses file mirroring to continuously synchronize the
local job and task files with those on the cluster. When file mirroring first starts, local job and task
files are uploaded to the remote job storage location. As the job executes, the file mirroring
continuously checks the remote job storage location for new files and updates, and copies the files to
the local storage on the client. This procedure ensures the MATLAB client always has an up-to-date
view of the jobs and tasks executing on the scheduler.

This example connects to the remote host, remoteHostname, as the user, user, and establishes /
remote/storage as the remote cluster storage location to synchronize with. It then starts file
mirroring for a job, copying the local files of the job to /remote/storage on the cluster, and then
syncing any changes back to the local machine.

% This will prompt for the password of user
access = parallel.cluster.RemoteClusterAccess.getConnectedAccessWithMirror('remoteHostname', '/remote/storage', 'user');
% Start file mirroring for a job
access.startMirrorForJob(job); 

For an example of plugin scripts without a shared file system, see the nonshared submission mode in
“Sample Plugin Scripts” on page 6-17.

See Also

Related Examples
• “Configure Using the Generic Scheduler Interface” (MATLAB Parallel Server)
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Program Communicating Jobs

• “Program Communicating Jobs” on page 7-2
• “Program Communicating Jobs for a Supported Scheduler” on page 7-3
• “Further Notes on Communicating Jobs” on page 7-6
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Program Communicating Jobs
Communicating jobs are those in which the workers can communicate with each other during the
evaluation of their tasks. A communicating job consists of only a single task that runs simultaneously
on several workers, usually with different data. More specifically, the task is duplicated on each
worker, so each worker can perform the task on a different set of data, or on a particular segment of
a large data set. The workers can communicate with each other as each executes its task. The
function that the task runs can take advantage of a worker’s awareness of how many workers are
running the job, which worker this is among those running the job, and the features that allow
workers to communicate with each other.

In principle, you create and run communicating jobs similarly to the way you “Program Independent
Jobs” on page 6-2:

1 Define and select a cluster profile.
2 Find a cluster.
3 Create a communicating job.
4 Create a task.
5 Submit the job for running. For details about what each worker performs for evaluating a task,

see “Submit a Job to the Job Queue” on page 6-10.
6 Retrieve the results.

The differences between independent jobs and communicating jobs are summarized in the following
table.

Independent Job Communicating Job
MATLAB workers perform the tasks but do not
communicate with each other.

MATLAB workers can communicate with each
other during the running of their tasks.

You define any number of tasks in a job. You define only one task in a job. Duplicates of
that task run on all workers running the
communicating job.

Tasks need not run simultaneously. Tasks are
distributed to workers as the workers become
available, so a worker can perform several of the
tasks in a job.

Tasks run simultaneously, so you can run the job
only on as many workers as are available at run
time. The start of the job might be delayed until
the required number of workers is available.

Some of the details of a communicating job and its tasks might depend on the type of scheduler you
are using. The following sections discuss different schedulers and explain programming
considerations:

• “Program Communicating Jobs for a Supported Scheduler” on page 7-3
• “Plugin Scripts for Generic Schedulers” on page 6-17
• “Further Notes on Communicating Jobs” on page 7-6
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Program Communicating Jobs for a Supported Scheduler
In this section...
“Schedulers and Conditions” on page 7-3
“Code the Task Function” on page 7-3
“Code in the Client” on page 7-4

Schedulers and Conditions
You can run a communicating job using any type of scheduler. This section illustrates how to program
communicating jobs for supported schedulers (MATLAB Job Scheduler, local scheduler, Microsoft
Windows HPC Server (including CCS), Platform LSF, PBS Pro, or TORQUE).

To use this supported interface for communicating jobs, the following conditions must apply:

• You must have a shared file system between client and cluster machines
• You must be able to submit jobs directly to the scheduler from the client machine

Note When using any third-party scheduler for running a communicating job, if all these conditions
are not met, you must use the generic scheduler interface. (Communicating jobs also include
parpool, spmd, and parfor.) See “Plugin Scripts for Generic Schedulers” on page 6-17.

Code the Task Function
In this section a simple example illustrates the basic principles of programming a communicating job
with a third-party scheduler. In this example, the worker whose labindex value is 1 creates a magic
square comprised of a number of rows and columns that is equal to the number of workers running
the job (numlabs). In this case, four workers run a communicating job with a 4-by-4 magic square.
The first worker broadcasts the matrix with labBroadcast to all the other workers , each of which
calculates the sum of one column of the matrix. All of these column sums are combined with the
gplus function to calculate the total sum of the elements of the original magic square.

The function for this example is shown below.

function total_sum = colsum
if labindex == 1
    % Send magic square to other workers
    A = labBroadcast(1,magic(numlabs)) 
else
    % Receive broadcast on other workers
    A = labBroadcast(1) 
end

% Calculate sum of column identified by labindex for this worker
column_sum = sum(A(:,labindex))

% Calculate total sum by combining column sum from all workers
total_sum = gplus(column_sum)

This function is saved as the file colsum.m on the path of the MATLAB client. It will be sent to each
worker by the job’s AttachedFiles property.
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While this example has one worker create the magic square and broadcast it to the other workers,
there are alternative methods of getting data to the workers. Each worker could create the matrix for
itself. Alternatively, each worker could read its part of the data from a file on disk, the data could be
passed in as an argument to the task function, or the data could be sent in a file contained in the job’s
AttachedFiles property. The solution to choose depends on your network configuration and the
nature of the data.

Code in the Client
As with independent jobs, you choose a profile and create a cluster object in your MATLAB client by
using the parcluster function. There are slight differences in the profiles, depending on the
scheduler you use, but using profiles to define as many properties as possible minimizes coding
differences between the scheduler types.

You can create and configure the cluster object with this code:

c = parcluster('MyProfile')

where 'MyProfile' is the name of a cluster profile for the type of scheduler you are using. Any
required differences for various cluster options are controlled in the profile. You can have one or
more separate profiles for each type of scheduler. For complete details, see “Discover Clusters and
Use Cluster Profiles” on page 5-11. Create or modify profiles according to the instructions of your
system administrator.

When your cluster object is defined, you create the job object with the createCommunicatingJob
function. The job Type property must be set as 'SPMD' when you create the job.

cjob = createCommunicatingJob(c,'Type','SPMD');

The function file colsum.m (created in “Code the Task Function” on page 7-3) is on the MATLAB
client path, but it has to be made available to the workers. One way to do this is with the job’s
AttachedFiles property, which can be set in the profile you used, or by:

cjob.AttachedFiles = {'colsum.m'}

Here you might also set other properties on the job, for example, setting the number of workers to
use. Again, profiles might be useful in your particular situation, especially if most of your jobs require
many of the same property settings. To run this example on four workers, you can established this in
the profile, or by the following client code:

cjob.NumWorkersRange = 4

You create the job’s one task with the usual createTask function. In this example, the task returns
only one argument from each worker, and there are no input arguments to the colsum function.

t = createTask(cjob, @colsum, 1, {})

Use submit to run the job.

submit(cjob)

Make the MATLAB client wait for the job to finish before collecting the results. The results consist of
one value from each worker. The gplus function in the task shares data between the workers, so that
each worker has the same result.
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wait(cjob)
results = fetchOutputs(cjob)
results = 
    [136]
    [136]
    [136]
    [136]
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Further Notes on Communicating Jobs
In this section...
“Number of Tasks in a Communicating Job” on page 7-6
“Avoid Deadlock and Other Dependency Errors” on page 7-6

Number of Tasks in a Communicating Job
Although you create only one task for a communicating job, the system copies this task for each
worker that runs the job. For example, if a communicating job runs on four workers, the Tasks
property of the job contains four task objects. The first task in the job’s Tasks property corresponds
to the task run by the worker whose labindex is 1, and so on, so that the ID property for the task
object and labindex for the worker that ran that task have the same value. Therefore, the sequence
of results returned by the fetchOutputs function corresponds to the value of labindex and to the
order of tasks in the job’s Tasks property.

Avoid Deadlock and Other Dependency Errors
Because code running in one worker for a communicating job can block execution until some
corresponding code executes on another worker, the potential for deadlock exists in communicating
jobs. This is most likely to occur when transferring data between workers or when making code
dependent upon the labindex in an if statement. Some examples illustrate common pitfalls.

Suppose you have a codistributed array D, and you want to use the gather function to assemble the
entire array in the workspace of a single worker.

if labindex == 1
    assembled = gather(D);
end

The reason this fails is because the gather function requires communication between all the workers
across which the array is distributed. When the if statement limits execution to a single worker, the
other workers required for execution of the function are not executing the statement. As an
alternative, you can use gather itself to collect the data into the workspace of a single worker:
assembled = gather(D, 1).

In another example, suppose you want to transfer data from every worker to the next worker on the
right (defined as the next higher labindex). First you define for each worker what the workers on
the left and right are.

from_lab_left = mod(labindex - 2, numlabs) + 1;
to_lab_right  = mod(labindex, numlabs) + 1;

Then try to pass data around the ring.

labSend (outdata, to_lab_right);
indata = labReceive(from_lab_left);

The reason this code might fail is because, depending on the size of the data being transferred, the
labSend function can block execution in a worker until the corresponding receiving worker executes
its labReceive function. In this case, all the workers are attempting to send at the same time, and
none are attempting to receive while labSend has them blocked. In other words, none of the workers
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get to their labReceive statements because they are all blocked at the labSend statement. To avoid
this particular problem, you can use the labSendReceive function.
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GPU Computing

• “GPU Capabilities and Performance” on page 8-2
• “Establish Arrays on a GPU” on page 8-3
• “Random Number Streams on a GPU” on page 8-6
• “Run MATLAB Functions on a GPU” on page 8-9
• “Identify and Select a GPU Device” on page 8-19
• “Run CUDA or PTX Code on GPU” on page 8-20
• “Run MEX-Functions Containing CUDA Code” on page 8-28
• “Measure and Improve GPU Performance” on page 8-31
• “GPU Support by Release” on page 8-38
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GPU Capabilities and Performance
In this section...
“Capabilities” on page 8-2
“Performance Benchmarking” on page 8-2

Capabilities
Parallel Computing Toolbox enables you to program MATLAB to use your computer’s graphics
processing unit (GPU) for matrix operations. In many cases, execution in the GPU is faster than in the
CPU, so this feature might offer improved performance.

Toolbox capabilities with the GPU let you:

• “Identify and Select a GPU Device” on page 8-19
• “Create GPU Arrays from Existing Data” on page 8-3
• “Run MATLAB Functions on a GPU” on page 8-9
• “Run CUDA or PTX Code on GPU” on page 8-20
• “Run MEX-Functions Containing CUDA Code” on page 8-28

Performance Benchmarking
You can use gputimeit to measure the execution time of functions that run on the GPU. For more
details, see “Measure and Improve GPU Performance” on page 8-31.

The MATLAB Central file exchange offers a function called gpuBench, which measures the execution
time for various MATLAB GPU tasks and estimates the peak performance of your GPU. See https://
www.mathworks.com/matlabcentral/fileexchange/34080-gpubench.
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Establish Arrays on a GPU

In this section...
“Create GPU Arrays from Existing Data” on page 8-3
“Create GPU Arrays Directly” on page 8-4
“Examine gpuArray Characteristics” on page 8-4
“Save and Load gpuArrays” on page 8-5

A gpuArray in MATLAB represents an array that is stored on the GPU. For a complete list of
functions that support arrays on the GPU, see “Run MATLAB Functions on a GPU” on page 8-9.

Create GPU Arrays from Existing Data
Send Arrays to the GPU

GPU arrays can be created by transferring existing arrays from the workspace to the GPU. Use the
gpuArray function to transfer an array from MATLAB to the GPU:

N = 6;
M = magic(N);
G = gpuArray(M);

You can accomplish this in a single line of code:

G = gpuArray(magic(N));

G is now a MATLAB gpuArray object that represents the magic square stored on the GPU. The input
provided to gpuArray must be numeric (for example: single, double, int8, etc.) or logical. (See
also “Work with Complex Numbers on a GPU” on page 8-16.)

Retrieve Arrays from the GPU

Use the gather function to retrieve arrays from the GPU to the MATLAB workspace. This takes an
array that is on the GPU represented by a gpuArray object, and transfers it to the MATLAB
workspace as a regular MATLAB array. You can use isequal to verify that you get the correct values
back:

G = gpuArray(ones(100,'uint32'));
D = gather(G);
OK = isequal(D,ones(100,'uint32'))

Gathering back to the CPU can be costly, and is generally not necessary unless you need to use your
result with functions that do not support gpuArray.

Example: Transfer Array to the GPU

Create a 1000-by-1000 random matrix in MATLAB, and then transfer it to the GPU:

X = rand(1000);
G = gpuArray(X);
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Example: Transfer Array of a Specified Precision

Create a matrix of double-precision random values in MATLAB, and then transfer the matrix as
single-precision from MATLAB to the GPU:

X = rand(1000);
G = gpuArray(single(X));

Create GPU Arrays Directly
A number of functions allow you to directly construct arrays on the GPU by specifying the
'gpuArray' type as an input argument. These functions require only array size and data class
information, so they can construct an array without having to transfer any elements from the
MATLAB workspace. For more information, see gpuArray.

Example: Construct an Identity Matrix on the GPU

To create a 1024-by-1024 identity matrix of type int32 on the GPU, type

II = eye(1024,'int32','gpuArray');
size(II)

        1024        1024

With one numerical argument, you create a 2-dimensional matrix.

Example: Construct a Multidimensional Array on the GPU

To create a 3-dimensional array of ones with data class double on the GPU, type

G = ones(100,100,50,'gpuArray');
size(G)

   100   100    50

classUnderlying(G)

double

The default class of the data is double, so you do not have to specify it.

Example: Construct a Vector on the GPU

To create a 8192-element column vector of zeros on the GPU, type

Z = zeros(8192,1,'gpuArray');
size(Z)

        8192           1

For a column vector, the size of the second dimension is 1.

Examine gpuArray Characteristics
There are several functions available for examining the characteristics of a gpuArray object:
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Function Description
classUnderlying Class of the underlying data in the array
existsOnGPU Indication if array exists on the GPU and is accessible
isreal Indication if array data is real
isaUnderlying Determine if tall array data is of specified class, such as

gpuArray
isequal Determine if two or more arrays are equal
isnumeric Determine if an array is of a numeric data type
issparse Determine if an array is sparse
length Length of vector or largest array dimension
ndims Number of dimensions in the array
size Size of array dimensions

For example, to examine the size of the gpuArray object G, type:

G = rand(100,'gpuArray');
s = size(G)

    100   100

Save and Load gpuArrays
You can save gpuArray variables as MAT files for later use. When you save a gpuArray from the
MATLAB workspace, the data is saved as a gpuArray variable in a MAT file. When you load a MAT file
containing a gpuArray variable, the data is loaded onto the GPU as a gpuArray.

Note You can load MAT files containing gpuArray data as in-memory arrays when a GPU is not
available. A gpuArray loaded without a GPU is limited and you cannot use it for computations. To use
a gpuArray loaded without a GPU, retrieve the contents using gather.

For more information about how to save and load variables in the MATLAB workspace, see “Save and
Load Workspace Variables” (MATLAB).

See Also
gpuArray

More About
• “Run MATLAB Functions on a GPU” on page 8-9
• “Identify and Select a GPU Device” on page 8-19

 Establish Arrays on a GPU

8-5



Random Number Streams on a GPU
By default, the random number generation functions rand, randi, and randn use different
generator settings for calculations on a GPU compared to those on a CPU. You can change the
behavior of random number generators to generate reproducible sequences of random numbers on
the GPU and CPU.

The table below summarizes the default settings for the GPU and CPU on client and worker MATLAB
sessions:

 Generator Seed Normal Transform
Client CPU 'Twister' or 'mt19937ar' 0 'Ziggurat'
Worker CPU 'Threefry' or

'Threefry4x64_20'
0 'Inversion'

GPU (on client or worker) 'Threefry' or
'Threefry4x64_20'

0 'BoxMuller'

In most cases, it does not matter that the default random number generator on the GPU is not the
same as the default generators on the client or worker CPU. However, if you need to reproduce the
same results on both the GPU and CPU, you can set the generators accordingly.

Client CPU and GPU
In a fresh MATLAB session, MATLAB generates different sequences of random numbers on the CPU
and GPU.

Rc = rand(1,4)

Rc =
    0.8147    0.9058    0.1270    0.9134

Rg = rand(1,4,'gpuArray')

Rg =
    0.3640    0.5421    0.6543    0.7436

If you need to generate the same sequence of random numbers on both the GPU and CPU, you can set
the generator settings to match.

There are three random number generator algorithms available on the GPU: 'Threefry',
'Philox', and 'CombRecursive'. All are supported on the CPU. The following table lists the
algorithms for these generators and their properties.

Keyword Generator Multiple Stream and
Substream Support

Approximate Period in
Full Precision

'Threefry' or
'Threefry4x64_20'

Threefry 4x64 generator
with 20 rounds

Yes 2514 (2256 streams of length
2258)

'Philox' or
'Philox4x32_10'

Philox 4x32 generator with
10 rounds

Yes 2193 (264 streams of length
2129)

'CombRecursive' or
'mrg32k3a'

Combined multiple
recursive generator

Yes 2191 (263 streams of length
2127)
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You can use rng and gpurng to set the generator algorithm and seed on the CPU and GPU,
respectively.

sc = rng(1,'Threefry');
Rc = rand(1,4)

Rc =
   0.1404    0.8197    0.1073    0.4131

sg = gpurng(1,'Threefry');
Rg = rand(1,4,'gpuArray')

Rg =
    0.1404    0.8197    0.1073    0.4131

rand and randi now generate the same sequences of random numbers on the client CPU and GPU.

Worker CPU and GPU
A parallel worker CPU uses the same default random number generator type and seed as the client
GPU and the worker GPU, if it has one. The GPU and CPU do not share the same stream. By default,
rand and randi generate the same sequence of numbers on a GPU and a worker CPU.

The settings are different from those on the client CPU. For more information, see “Control Random
Number Streams on Workers” on page 5-29

If you need to generate different random numbers on each worker, you can change the generator
settings. In this example, each worker creates the same sequence on its GPU and CPU, but different
sequences are generated on each worker.

p = parpool(2);
spmd
    rng(labindex,'Threefry');
    Rc = rand(1,4)

    gpurng(labindex,'Threefry');
    Rg = rand(1,4,'gpuArray')
end
delete(p)

Normally Distributed Random Numbers
For normally distributed random numbers created using the randn function, MATLAB produces
different results on a client CPU, a worker CPU and a GPU. The transformation of uniform random
numbers into normally distributed random numbers is controlled by the NormalTransform setting.
You can control this on the GPU using parallel.gpu.RandStream.

On a client CPU, the default 'NormalTransform' setting is 'Ziggurat'. On a worker CPU, the
default setting is 'Inversion'.

Unless otherwise specified, GPU code uses the 'BoxMuller' transform for the 'Threefry' and
'Philox' generators and the 'Inversion' transform for the 'CombRecursive' generator.

You can set the same generators and transforms on the CPU and the GPU to get the same randn
sequences. The only transform supported on both the CPU and GPU is the 'Inversion' transform.
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sc = RandStream('Threefry','NormalTransform','Inversion','Seed',1);
RandStream.setGlobalStream(sc)

sg = parallel.gpu.RandStream('Threefry','NormalTransform','Inversion','Seed',1);
parallel.gpu.RandStream.setGlobalStream(sg);

Rc = randn(1,4)

Rc =
   -1.0783    0.9144   -1.2412   -0.2196

Rg = randn(1,4,'gpuArray')

Rg =
   -1.0783    0.9144   -1.2412   -0.2196

See Also
RandStream | gpurng | parallel.gpu.RandStream | rng

More About
• “Control Random Number Streams on Workers” on page 5-29
• “Creating and Controlling a Random Number Stream” (MATLAB)
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Run MATLAB Functions on a GPU

MATLAB Functions with gpuArray Arguments
Hundreds of functions in MATLAB and other toolboxes run automatically on a GPU if you supply a
gpuArray argument.

A = gpuArray([1 0 1; -1 -2 0; 0 1 -1]);
e = eig(A);

Whenever you call any of these functions with at least one gpuArray as a data input argument, the
function executes on the GPU. The function generates a gpuArray as the result, unless returning
MATLAB data is more appropriate (for example, size). You can mix inputs using both gpuArray and
MATLAB arrays in the same function call. To learn more about when a function runs on GPU or CPU,
see “Special Conditions for gpuArray Inputs” on page 8-17. GPU-enabled functions include the
discrete Fourier transform (fft), matrix multiplication (mtimes), left matrix division (mldivide),
and hundreds of others. For more information, see “Check GPU-Supported Functions” on page 8-9.

Check GPU-Supported Functions

If a MATLAB function has support for gpuArrays, you can consult additional GPU usage information
on its function page. See GPU Arrays in the Extended Capabilities section at the end of the
function page.

Tip For a filtered list of MATLAB that support GPU arrays, see Function List (GPU-arrays).

Several MATLAB toolboxes include functions with built-in GPU support. To view lists of all functions
in these toolboxes that support gpuArrays, use the links in the following table. Functions in the lists
with warning indicators have limitations or usage notes specific to running the function on a GPU. You
can check the usage notes and limitations in the Extended Capabilities section of the function
reference page. For information about updates to individual GPU-enabled functions, see the release
notes.

Toolbox name List of functions with gpuArray support
MATLAB Functions with gpuArray support
Statistics and Machine Learning Toolbox Functions with gpuArray support
Image Processing Toolbox™ Functions with gpuArray support
Deep Learning Toolbox™ Functions with gpuArray support

*(see also “Deep Learning with GPUs” on page 8-
10)

Computer Vision Toolbox™ Functions with gpuArray support
Communications Toolbox™ Functions with gpuArray support
Signal Processing Toolbox™ Functions with gpuArray support
Audio Toolbox™ Functions with gpuArray support
Wavelet Toolbox™ Functions with gpuArray support
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Toolbox name List of functions with gpuArray support
Curve Fitting Toolbox™ Functions with gpuArray support

You can browse GPU-supported functions from all MathWorks products at the following link: GPU-
supported functions. Alternatively, you can filter by product. On the Help bar, click Functions. In the
function list, browse the left pane to select a product, for example, MATLAB. At the bottom of the left
pane, select GPU Arrays. If you select a product that does not have GPU-enabled functions, then the
GPU Arrays filter is not available.

Deep Learning with GPUs

For many functions in Deep Learning Toolbox, GPU support is automatic if you have a suitable GPU
and Parallel Computing Toolbox. You do not need to convert your data to gpuArray. The following is a
non-exhaustive list of functions that, by default, run on the GPU if available.

• trainNetwork
• predict
• predictAndUpdateState
• classify
• classifyAndUpdateState
• activations

For more information about automatic GPU-support in Deep Learning Toolbox, see “Deep Learning
with Big Data on GPUs and in Parallel” (Deep Learning Toolbox).

For advanced networks and workflows that use networks defined as dlnetwork objects or model
functions, convert your data to gpuArray. Use functions with gpuArray support to run custom training
loops or prediction on the GPU.

Check or Select a GPU
If you have a GPU, then MATLAB automatically uses it for GPU computations. You can check your
GPU using the gpuDevice function. If you have multiple GPUs, then you can use gpuDevice to
select one of them, or use multiple GPUs with a parallel pool. For an example, see “Identify and
Select a GPU” on page 9-31 and “Use Multiple GPUs in a Parallel Pool” on page 9-32. To check if
your GPU is supported, see “GPU Support by Release” on page 8-38.

For deep learning, MATLAB provides automatic parallel support for multiple GPUs. See “Deep
Learning with MATLAB on Multiple GPUs” (Deep Learning Toolbox).

Use MATLAB Functions with a GPU
This example shows how to use GPU-enabled MATLAB functions to operate with gpuArrays. You can
check the properties of your GPU using the gpuDevice function.

gpuDevice

ans = 
  CUDADevice with properties:

                      Name: 'GeForce GTX 1080'
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                     Index: 1
         ComputeCapability: '6.1'
            SupportsDouble: 1
             DriverVersion: 10.1000
            ToolkitVersion: 10.1000
        MaxThreadsPerBlock: 1024
          MaxShmemPerBlock: 49152
        MaxThreadBlockSize: [1024 1024 64]
               MaxGridSize: [2.1475e+09 65535 65535]
                 SIMDWidth: 32
               TotalMemory: 8.5899e+09
           AvailableMemory: 6.9012e+09
       MultiprocessorCount: 20
              ClockRateKHz: 1733500
               ComputeMode: 'Default'
      GPUOverlapsTransfers: 1
    KernelExecutionTimeout: 1
          CanMapHostMemory: 1
           DeviceSupported: 1
            DeviceSelected: 1

Create a row vector that repeats values from -15 to 15. To transfer it to the GPU and create a
gpuArray, use the gpuArray function.

X = [-15:15 0 -15:15 0 -15:15];
gpuX = gpuArray(X);
whos gpuX

  Name      Size            Bytes  Class       Attributes

  gpuX      1x95                4  gpuArray              

To operate with gpuArrays, use any GPU-enabled MATLAB function. MATLAB automatically runs
calculations on the GPU. For more information, see “Run MATLAB Functions on a GPU” on page 8-9.
For example, use a combination of diag, expm, mod, round, abs, and fliplr.

gpuE = expm(diag(gpuX,-1)) * expm(diag(gpuX,1));
gpuM = mod(round(abs(gpuE)),2);
gpuF = gpuM + fliplr(gpuM);

Plot the results.

imagesc(gpuF);
colormap(flip(gray));
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If you need to transfer the data back from the GPU, use gather. Gathering back to the CPU can be
costly, and is generally not necessary unless you need to use your result with functions that do not
support gpuArray.

result = gather(gpuF);
whos result

  Name         Size            Bytes  Class     Attributes

  result      96x96            73728  double              

In general there can be differences in the results if you run the code on the CPU, due to numerical
precision and algorithmic differences between GPU and CPU. Answers on CPU and GPU are both
equally valid floating point approximations to the true analytical result, having been subjected to
different roundoff during computation. In this example, the results are integers and round eliminates
the roundoff errors.

Sharpen an Image Using the GPU
This example shows how to sharpen an image using gpuArrays and GPU-enabled functions.

Read the image, and send it to the GPU using the gpuArray function.

image = gpuArray(imread('peppers.png'));
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Convert the image to doubles, and apply convolutions to obtain the gradient image. Then, using the
gradient image, sharpen the image by a factor of amount.

dimage = im2double(image); 
gradient = convn(dimage,ones(3)./9,'same') - convn(dimage,ones(5)./25,'same');
amount = 5;
sharpened = dimage + amount.*gradient;

Resize, plot and compare the original and sharpened images.

imshow(imresize([dimage, sharpened],0.7));
title('Original image (left) vs sharpened image (right)');

Compute the Mandelbrot Set using GPU-Enabled Functions
This example shows how to use GPU-enabled MATLAB functions to compute a well-known
mathematical construction: the Mandelbrot set. Check your GPU using the gpuDevice function.

Define the parameters. The Mandelbrot algorithm iterates over a grid of real and imaginary parts.
The following code defines the number of iterations, grid size, and grid limits.

maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161, -0.748766707771757];
ylim = [ 0.123640844894862,  0.123640851045266]; 

You can use the gpuArray function to transfer data to the GPU and create a gpuArray, or you can
create an array directly on the GPU. gpuArray provides GPU versions of many functions that you can
use to create data arrays, such as linspace. For more information, see “Create GPU Arrays
Directly” on page 8-4.

x = gpuArray.linspace(xlim(1),xlim(2),gridSize);
y = gpuArray.linspace(ylim(1),ylim(2),gridSize);
whos x y

  Name      Size              Bytes  Class       Attributes
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  x         1x1000                4  gpuArray              
  y         1x1000                4  gpuArray              

Many MATLAB functions support gpuArrays. When you supply a gpuArray argument to any GPU-
enabled function, the function runs automatically on the GPU. For more information, see “Run
MATLAB Functions on a GPU” on page 8-9. Create a complex grid for the algorithm, and create the
array count for the results. To create this array directly on the GPU, use the ones function, and
specify 'gpuArray'.

[xGrid,yGrid] = meshgrid(x,y);
z0 = complex(xGrid,yGrid);
count = ones(size(z0),'gpuArray');

The following code implements the Mandelbrot algorithm using GPU-enabled functions. Because the
code uses gpuArrays, the calculations happen on the GPU.

z = z0;
for n = 0:maxIterations
    z = z.*z + z0;
    inside = abs(z) <= 2;
    count = count + inside;
end
count = log(count);

When computations are done, plot the results.

imagesc(x,y,count)
colormap([jet();flipud(jet());0 0 0]);
axis off
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Work with Sparse Arrays on a GPU
The following functions support sparse gpuArrays.

 Run MATLAB Functions on a GPU

8-15



abs
angle
bicg
bicgstab
ceil
cgs
classUnderlying
conj
ctranspose
deg2rad
diag
end
expm1
find
fix
floor
full
gmres
gpuArray.speye
imag
isaUnderlying
isdiag
isempty

isequal
isequaln
isfloat
isinteger
islogical
isnumeric
isreal
issparse
istril
istriu
length
log1p
lsqr
minus
mtimes
ndims
nextpow2
nnz
nonzeros
norm
numel
nzmax
pcg

plus
qmr
rad2deg
real
realsqrt
round
sign
size
sparse
spfun
spones
sprandsym
sqrt
sum
tfqmr
times (.*)
trace
transpose
tril
triu
uminus
uplus  

You can create a sparse gpuArray either by calling sparse with a gpuArray input, or by calling
gpuArray with a sparse input. For example,

x = [0 1 0 0 0; 0 0 0 0 1]

     0     1     0     0     0
     0     0     0     0     1

s = sparse(x)

   (1,2)        1
   (2,5)        1

g = gpuArray(s);   % g is a sparse gpuArray
gt = transpose(g); % gt is a sparse gpuArray
f = full(gt)       % f is a full gpuArray

     0     0
     1     0
     0     0
     0     0
     0     1

Sparse gpuArrays do not support indexing. Instead, use find to locate nonzero elements of the array
and their row and column indices. Then, replace the values you want and construct a new sparse
gpuArray.

Work with Complex Numbers on a GPU
If the output of a function running on the GPU could potentially be complex, you must explicitly
specify its input arguments as complex. This applies to gpuArray or to functions called in code run
by arrayfun.
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For example, if creating a gpuArray that might have negative elements, use G =
gpuArray(complex(p)), then you can successfully execute sqrt(G).

Or, within a function passed to arrayfun, if x is a vector of real numbers, and some elements have
negative values, sqrt(x) generates an error; instead you should call sqrt(complex(x)).

If the result is a gpuArray of complex data and all the imaginary parts are zero, these parts are
retained and the data remains complex. This could have an impact when using sort, isreal, and so
on.

The following table lists the functions that might return complex data, along with the input range
over which the output remains real.

Function Input Range for Real Output
acos(x) abs(x) <= 1
acosh(x) x >= 1
acoth(x) abs(x) >= 1
acsc(x) abs(x) >= 1
asec(x) abs(x) >= 1
asech(x) 0 <= x <= 1
asin(x) abs(x) <= 1
atanh(x) abs(x) <= 1
log(x) x >= 0
log1p(x) x >= -1
log10(x) x >= 0
log2(x) x >= 0
power(x,y) x >= 0
reallog(x) x >= 0
realsqrt(x) x >= 0
sqrt(x) x >= 0

Special Conditions for gpuArray Inputs
GPU-enabled functions run on the GPU only when the data is on the GPU. For example, the following
code runs on GPU because the data, the first input, is on the GPU:

>> sum(gpuArray(magic(10)),2);

However, this code does not run on GPU because the data, the first input, is not on the GPU:

>> sum(magic(10),gpuArray(2));

If your input argument gpuArrays contain items such as dimensions, scaling factors, or number of
iterations, then the function gathers them and computes on the CPU. Functions only run on the GPU
when the actual data arguments are gpuArrays.
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MAGMA is a library of linear algebra routines that take advantage of GPU acceleration. Linear
algebra functions implemented for gpuArrays in Parallel Computing Toolbox leverage MAGMA to
achieve high performance and accuracy.

See Also
gpuArray | gpuDevice

Related Examples
• “Identify and Select a GPU Device” on page 8-19
• “Establish Arrays on a GPU” on page 8-3

More About
• “GPU Support by Release” on page 8-38
• “GPU Capabilities and Performance” on page 8-2
• MAGMA
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Identify and Select a GPU Device
This example shows how to identify and select a GPU for your computations.

To determine how many GPU devices are available in your computer, use the gpuDeviceCount
function.

gpuDeviceCount

    2

When there are multiple devices, the first is the default. You can examine its properties with the
gpuDevice function to determine if that is the one you want to use.

d = gpuDevice

d =

  CUDADevice with properties:

                      Name: 'GeForce GTX 1080'
                     Index: 1
         ComputeCapability: '6.1'
            SupportsDouble: 1
             DriverVersion: 9.2000
            ToolkitVersion: 9
        MaxThreadsPerBlock: 1024
          MaxShmemPerBlock: 49152
        MaxThreadBlockSize: [1024 1024 64]
               MaxGridSize: [2.1475e+09 65535 65535]
                 SIMDWidth: 32
               TotalMemory: 8.5899e+09
           AvailableMemory: 7.0053e+09
       MultiprocessorCount: 20
              ClockRateKHz: 1733500
               ComputeMode: 'Default'
      GPUOverlapsTransfers: 1
    KernelExecutionTimeout: 1
          CanMapHostMemory: 1
           DeviceSupported: 1
            DeviceSelected: 1

If d is the device you want to use, you can proceed. To run computations on the GPU, use gpuArray
enabled functions. For more information, see “Run MATLAB Functions on a GPU” on page 8-9.

To use another device, call gpuDevice with the index of the other device.

gpuDevice(2)

See Also
“Establish Arrays on a GPU” on page 8-3 | “Measure and Improve GPU Performance” on page 8-31 |
“Run MATLAB Functions on a GPU” on page 8-9 | “GPU Capabilities and Performance” on page 8-2

More About
• “GPU Support by Release” on page 8-38
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Run CUDA or PTX Code on GPU
In this section...
“Overview” on page 8-20
“Create a CUDAKernel Object” on page 8-20
“Run a CUDAKernel” on page 8-24
“Complete Kernel Workflow” on page 8-26

Overview
This topic explains how to create an executable kernel from CU or PTX (parallel thread execution)
files, and run that kernel on a GPU from MATLAB. The kernel is represented in MATLAB by a
CUDAKernel object, which can operate on MATLAB array or gpuArray variables.

The following steps describe the CUDAKernel general workflow:

1 Use compiled PTX code to create a CUDAKernel object, which contains the GPU executable code.
2 Set properties on the CUDAKernel object to control its execution on the GPU.
3 Call feval on the CUDAKernel with the required inputs, to run the kernel on the GPU.

MATLAB code that follows these steps might look something like this:

% 1. Create CUDAKernel object.
k = parallel.gpu.CUDAKernel('myfun.ptx','myfun.cu','entryPt1');

% 2. Set object properties.
k.GridSize = [8 1];
k.ThreadBlockSize = [16 1];

% 3. Call feval with defined inputs.
g1 = gpuArray(in1); % Input gpuArray.
g2 = gpuArray(in2); % Input gpuArray.

result = feval(k,g1,g2);

The following sections provide details of these commands and workflow steps.

Create a CUDAKernel Object
• “Compile a PTX File from a CU File” on page 8-21
• “Construct CUDAKernel Object with CU File Input” on page 8-21
• “Construct CUDAKernel Object with C Prototype Input” on page 8-21
• “Supported Data Types” on page 8-21
• “Argument Restrictions” on page 8-22
• “CUDAKernel Object Properties” on page 8-23
• “Specify Entry Points” on page 8-23
• “Specify Number of Threads” on page 8-24
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Compile a PTX File from a CU File

If you have a CU file you want to execute on the GPU, you must first compile it to create a PTX file.
One way to do this is with the nvcc compiler in the NVIDIA® CUDA® Toolkit. For example, if your CU
file is called myfun.cu, you can create a compiled PTX file with the shell command:

nvcc -ptx myfun.cu

This generates the file named myfun.ptx.

Construct CUDAKernel Object with CU File Input

With a .cu file and a .ptx file you can create a CUDAKernel object in MATLAB that you can then use
to evaluate the kernel:

k = parallel.gpu.CUDAKernel('myfun.ptx','myfun.cu');

Note You cannot save or load CUDAKernel objects.

Construct CUDAKernel Object with C Prototype Input

If you do not have the CU file corresponding to your PTX file, you can specify the C prototype for your
C kernel instead of the CU file. For example:
k = parallel.gpu.CUDAKernel('myfun.ptx','float *, const float *, float');

Another use for C prototype input is when your source code uses an unrecognized renaming of a
supported data type. (See the supported types below.) Suppose your kernel comprises the following
code.

typedef float ArgType;
__global__ void add3( ArgType * v1, const ArgType * v2 )
{
    int idx = threadIdx.x;
    v1[idx] += v2[idx];
}

ArgType itself is not recognized as a supported data type, so the CU file that includes it cannot be
directly used as input when creating the CUDAKernel object in MATLAB. However, the supported
input types to the add3 kernel can be specified as C prototype input to the CUDAKernel constructor.
For example:
k = parallel.gpu.CUDAKernel('test.ptx','float *, const float *','add3');

Supported Data Types

The supported C/C++ standard data types are listed in the following table.
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Float Types Integer Types Boolean and Character Types
double, double2

float, float2

short, unsigned short,
short2, ushort2

int, unsigned int, int2,
uint2

long, unsigned long, long2,
ulong2

long long, unsigned long
long, longlong2, ulonglong2

ptrdiff_t, size_t

bool

char, unsigned char, char2,
uchar2

Also, the following integer types are supported when you include the tmwtypes.h header file in your
program.

Integer Types
int8_T, int16_T, int32_T, int64_T

uint8_T, uint16_T, uint32_T, uint64_T

The header file is shipped as matlabroot/extern/include/tmwtypes.h. You include the file in
your program with the line:

#include "tmwtypes.h"

Argument Restrictions

All inputs can be scalars or pointers, and can be labeled const.

The C declaration of a kernel is always of the form:

__global__ void aKernel(inputs ...)

• The kernel must return nothing, and operate only on its input arguments (scalars or pointers).
• A kernel is unable to allocate any form of memory, so all outputs must be pre-allocated before the

kernel is executed. Therefore, the sizes of all outputs must be known before you run the kernel.
• In principle, all pointers passed into the kernel that are not const could contain output data,

since the many threads of the kernel could modify that data.

When translating the definition of a kernel in C into MATLAB:

• All scalar inputs in C (double, float, int, etc.) must be scalars in MATLAB, or scalar (i.e.,
single-element) gpuArray variables.

• All const pointer inputs in C (const double *, etc.) can be scalars or matrices in MATLAB.
They are cast to the correct type, copied onto the device, and a pointer to the first element is
passed to the kernel. No information about the original size is passed to the kernel. It is as though
the kernel has directly received the result of mxGetData on an mxArray.

• All nonconstant pointer inputs in C are transferred to the kernel exactly as nonconstant pointers.
However, because a nonconstant pointer could be changed by the kernel, this will be considered
as an output from the kernel.
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• Inputs from MATLAB workspace scalars and arrays are cast into the requested type and then
passed to the kernel. However, gpuArray inputs are not automatically cast, so their type and
complexity must exactly match those expected.

These rules have some implications. The most notable is that every output from a kernel must
necessarily also be an input to the kernel, since the input allows the user to define the size of the
output (which follows from being unable to allocate memory on the GPU).

CUDAKernel Object Properties

When you create a kernel object without a terminating semicolon, or when you type the object
variable at the command line, MATLAB displays the kernel object properties. For example:

k = parallel.gpu.CUDAKernel('conv.ptx','conv.cu')

k = 
  parallel.gpu.CUDAKernel handle
  Package: parallel.gpu

  Properties:
     ThreadBlockSize: [1 1 1]
  MaxThreadsPerBlock: 512
            GridSize: [1 1 1]
    SharedMemorySize: 0
          EntryPoint: '_Z8theEntryPf'
  MaxNumLHSArguments: 1
     NumRHSArguments: 2
       ArgumentTypes: {'in single vector'  'inout single vector'}

The properties of a kernel object control some of its execution behavior. Use dot notation to alter
those properties that can be changed.

For a descriptions of the object properties, see the CUDAKernel object reference page. A typical
reason for modifying the settable properties is to specify the number of threads, as described below.

Specify Entry Points

If your PTX file contains multiple entry points, you can identify the particular kernel in myfun.ptx
that you want the kernel object k to refer to:

k = parallel.gpu.CUDAKernel('myfun.ptx','myfun.cu','myKernel1');

A single PTX file can contain multiple entry points to different kernels. Each of these entry points has
a unique name. These names are generally mangled (as in C++ mangling). However, when generated
by nvcc the PTX name always contains the original function name from the CU file. For example, if
the CU file defines the kernel function as

__global__ void simplestKernelEver( float * x, float val )

then the PTX code contains an entry that might be called _Z18simplestKernelEverPff.

When you have multiple entry points, specify the entry name for the particular kernel when calling
CUDAKernel to generate your kernel.

 Run CUDA or PTX Code on GPU

8-23



Note The CUDAKernel function searches for your entry name in the PTX file, and matches on any
substring occurrences. Therefore, you should not name any of your entries as substrings of any
others.

You might not have control over the original entry names, in which case you must be aware of the
unique mangled derived for each. For example, consider the following function template.

template <typename T>
__global__ void add4( T * v1, const T * v2 )
{
    int idx = threadIdx.x;
    v1[idx] += v2[idx];
}

When the template is expanded out for float and double, it results in two entry points, both of which
contain the substring add4.

template __global__ void add4<float>(float *, const float *);
template __global__ void add4<double>(double *, const double *);

The PTX has corresponding entries:

_Z4add4IfEvPT_PKS0_
_Z4add4IdEvPT_PKS0_

Use entry point add4If for the float version, and add4Id for the double version.
k = parallel.gpu.CUDAKernel('test.ptx','double *, const double *','add4Id');

Specify Number of Threads

You specify the number of computational threads for your CUDAKernel by setting two of its object
properties:

• GridSize — A vector of three elements, the product of which determines the number of blocks.
• ThreadBlockSize — A vector of three elements, the product of which determines the number of

threads per block. (Note that the product cannot exceed the value of the property
MaxThreadsPerBlock.)

The default value for both of these properties is [1 1 1], but suppose you want to use 500 threads
to run element-wise operations on vectors of 500 elements in parallel. A simple way to achieve this is
to create your CUDAKernel and set its properties accordingly:

k = parallel.gpu.CUDAKernel('myfun.ptx','myfun.cu');
k.ThreadBlockSize = [500,1,1];

Generally, you set the grid and thread block sizes based on the sizes of your inputs. For information
on thread hierarchy, and multiple-dimension grids and blocks, see the NVIDIA CUDA C Programming
Guide.

Run a CUDAKernel
• “Use Workspace Variables” on page 8-25
• “Use gpuArray Variables” on page 8-25
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• “Determine Input and Output Correspondence” on page 8-25

Use the feval function to evaluate a CUDAKernel on the GPU. The following examples show how to
execute a kernel using MATLAB workspace variables and gpuArray variables.

Use Workspace Variables

Assume that you have already written some kernels in a native language and want to use them in
MATLAB to execute on the GPU. You have a kernel that does a convolution on two vectors; load and
run it with two random input vectors:

k = parallel.gpu.CUDAKernel('conv.ptx','conv.cu');

result = feval(k,rand(100,1),rand(100,1));

Even if the inputs are constants or variables for MATLAB workspace data, the output is gpuArray.

Use gpuArray Variables

It might be more efficient to use gpuArray objects as input when running a kernel:

k = parallel.gpu.CUDAKernel('conv.ptx','conv.cu');

i1 = gpuArray(rand(100,1,'single'));
i2 = gpuArray(rand(100,1,'single'));

result1 = feval(k,i1,i2);

Because the output is a gpuArray, you can now perform other operations using this input or output
data without further transfers between the MATLAB workspace and the GPU. When all your GPU
computations are complete, gather your final result data into the MATLAB workspace:

result2 = feval(k,i1,i2);

r1 = gather(result1);
r2 = gather(result2);

Determine Input and Output Correspondence

When calling [out1, out2] = feval(kernel, in1, in2, in3), the inputs in1, in2, and in3
correspond to each of the input arguments to the C function within your CU file. The outputs out1
and out2 store the values of the first and second non-const pointer input arguments to the C function
after the C kernel has been executed.

For example, if the C kernel within a CU file has the following signature:

void reallySimple( float * pInOut, float c )

the corresponding kernel object (k) in MATLAB has the following properties:

MaxNumLHSArguments: 1
   NumRHSArguments: 2
     ArgumentTypes: {'inout single vector'  'in single scalar'}

Therefore, to use the kernel object from this code with feval, you need to provide feval two input
arguments (in addition to the kernel object), and you can use one output argument:

y = feval(k,x1,x2)
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The input values x1 and x2 correspond to pInOut and c in the C function prototype. The output
argument y corresponds to the value of pInOut in the C function prototype after the C kernel has
executed.

The following is a slightly more complicated example that shows a combination of const and non-
const pointers:
void moreComplicated( const float * pIn, float * pInOut1, float * pInOut2 )

The corresponding kernel object in MATLAB then has the properties:
MaxNumLHSArguments: 2
   NumRHSArguments: 3
     ArgumentTypes: {'in single vector'  'inout single vector'  'inout single vector'}

You can use feval on this code’s kernel (k) with the syntax:

[y1,y2] = feval(k,x1,x2,x3)

The three input arguments x1, x2, and x3, correspond to the three arguments that are passed into
the C function. The output arguments y1 and y2, correspond to the values of pInOut1 and pInOut2
after the C kernel has executed.

Complete Kernel Workflow
• “Add Two Numbers” on page 8-26
• “Add Two Vectors” on page 8-27
• “Example with CU and PTX Files” on page 8-27

Add Two Numbers

This example adds two doubles together in the GPU. You should have the NVIDIA CUDA Toolkit
installed, and have CUDA-capable drivers for your device.

1 The CU code to do this is as follows.

__global__ void add1( double * pi, double c ) 
{
    *pi += c;
}

The directive __global__ indicates that this is an entry point to a kernel. The code uses a
pointer to send out the result in pi, which is both an input and an output. Put this code in a file
called test.cu in the current directory.

2 Compile the CU code at the shell command line to generate a PTX file called test.ptx.

nvcc -ptx test.cu
3 Create the kernel in MATLAB. Currently this PTX file only has one entry so you do not need to

specify it. If you were to put more kernels in, you would specify add1 as the entry.

k = parallel.gpu.CUDAKernel('test.ptx','test.cu');
4 Run the kernel with two numeric inputs. By default, a kernel runs on one thread.

result = feval(k,2,3)
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result = 
    5

Add Two Vectors

This example extends the previous one to add two vectors together. For simplicity, assume that there
are exactly the same number of threads as elements in the vectors and that there is only one thread
block.

1 The CU code is slightly different from the last example. Both inputs are pointers, and one is
constant because you are not changing it. Each thread will simply add the elements at its thread
index. The thread index must work out which element this thread should add. (Getting these
thread- and block-specific values is a very common pattern in CUDA programming.)

__global__ void add2( double * v1, const double * v2 ) 
{
    int idx = threadIdx.x;
    v1[idx] += v2[idx];
}

Save this code in the file test.cu.
2 Compile as before using nvcc.

nvcc -ptx test.cu
3 If this code was put in the same CU file along with the code of the first example, you need to

specify the entry point name this time to distinguish it.

k = parallel.gpu.CUDAKernel('test.ptx','test.cu','add2');
4 Before you run the kernel, set the number of threads correctly for the vectors you want to add.

N = 128;
k.ThreadBlockSize = N;
in1 = ones(N,1,'gpuArray');
in2 = ones(N,1,'gpuArray');
result = feval(k,in1,in2);

Example with CU and PTX Files

For an example that shows how to work with CUDA, and provides CU and PTX files for you to
experiment with, see “Illustrating Three Approaches to GPU Computing: The Mandelbrot Set”.
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Run MEX-Functions Containing CUDA Code
In this section...
“Write a MEX-File Containing CUDA Code” on page 8-28
“Run the Resulting MEX-Functions” on page 8-28
“Comparison to a CUDA Kernel” on page 8-29
“Access Complex Data” on page 8-29
“Compile a GPU MEX-File” on page 8-30

Write a MEX-File Containing CUDA Code
As with any MEX-files, those containing CUDA code have a single entry point, known as
mexFunction. The MEX-function contains the host-side code that interacts with gpuArray objects
from MATLAB and launches the CUDA code. The CUDA code in the MEX-file must conform to the
CUDA runtime API.

You should call the function mxInitGPU at the entry to your MEX-file. This ensures that the GPU
device is properly initialized and known to MATLAB.

The interface you use to write a MEX-file for gpuArray objects is different from the MEX interface for
standard MATLAB arrays.

You can see an example of a MEX-file containing CUDA code at:

matlabroot/toolbox/parallel/gpu/extern/src/mex/mexGPUExample.cu

This file contains the following CUDA device function:

void __global__ TimesTwo(double const * const A,
                         double * const B,
                         int const N)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < N)
        B[i] = 2.0 * A[i];
}

It contains the following lines to determine the array size and launch a grid of the proper size:

N = (int)(mxGPUGetNumberOfElements(A));
blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
TimesTwo<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, N);

Run the Resulting MEX-Functions
The MEX-function in this example multiplies every element in the input array by 2 to get the values in
the output array. To test it, start with a gpuArray in which every element is 1:

x = ones(4,4,'gpuArray');
y = mexGPUExample(x)

y = 
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    2    2    2    2
    2    2    2    2
    2    2    2    2
    2    2    2    2

Both the input and output arrays are gpuArray objects:

disp(['class(x) = ',class(x),', class(y) = ',class(y)])

class(x) = gpuArray, class(y) = gpuArray

Comparison to a CUDA Kernel
Parallel Computing Toolbox also supports CUDAKernel objects that can be used to integrate CUDA
code with MATLAB. Consider the following when choosing the MEX-file approach versus the
CUDAKernel approach:

• MEX-files can interact with host-side libraries, such as the NVIDIA Performance Primitives (NPP)
or CUFFT libraries, and can also contain calls from the host to functions in the CUDA runtime
library.

• MEX-files can analyze the size of the input and allocate memory of a different size, or launch grids
of a different size, from C or C++ code. In comparison, MATLAB code that calls CUDAKernel
objects must preallocate output memory and determine the grid size.

Access Complex Data
Complex data on a GPU device is stored in interleaved complex format. That is, for a complex
gpuArray A, the real and imaginary parts of element i are stored in consecutive addresses. MATLAB
uses CUDA built-in vector types to store complex data on the device (see the NVIDIA CUDA C
Programming Guide).

Depending on the needs of your kernel, you can cast the pointer to complex data either as the real
type or as the built-in vector type. For example, in MATLAB, suppose you create a matrix:

a = complex(ones(4,'gpuArray'),ones(4,'gpuArray'));

If you pass a gpuArray to a MEX-function as the first argument (prhs[0]), then you can get a pointer
to the complex data by using the calls:

mxGPUArray const * A = mxGPUCreateFromMxArray(prhs[0]);
mwSize numel_complex = mxGPUGetNumberOfElements(A);
double2 * d_A = (double2 const *)(mxGPUGetDataReadOnly(A));

To treat the array as a real double-precision array of twice the length, you could do it this way:

mxGPUArray const * A = mxGPUCreateFromMxArray(prhs[0]);
mwSize numel_real =2*mxGPUGetNumberOfElements(A);
double * d_A = (double const *)(mxGPUGetDataReadOnly(A));

Various functions exist to convert data between complex and real formats on the GPU. These
operations require a copy to interleave the data. The function mxGPUCreateComplexGPUArray
takes two real mxGPUArrays and interleaves their elements to produce a single complex mxGPUArray
of the same length. The functions mxGPUCopyReal and mxGPUCopyImag each copy either the real or
the imaginary elements into a new real mxGPUArray. (There is no equivalent of the mxGetImagData
function for mxGPUArray objects.)
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Compile a GPU MEX-File
To compile CUDA code you must have installed the CUDA toolkit version consistent with the
ToolkitVersion property of the gpuDevice object.

Use the mexcuda command in MATLAB to compile a MEX-file containing the CUDA code. You can
compile the example file using the command:

mexcuda mexGPUExample.cu

If mexcuda has trouble locating the NVIDIA compiler (nvcc), it might be installed in a non-default
location. You can specify the location of nvcc on your system by storing it in the environment variable
MW_NVCC_PATH. You can set this variable using the MATLAB setenv command. For example,

setenv('MW_NVCC_PATH','/usr/local/CUDA/bin')

Only a subset of Visual Studio® compilers is supported for mexcuda. For details, consult the NVIDIA
toolkit documentation.

See Also

Related Examples
• “Accessing Advanced CUDA Features Using MEX”
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Measure and Improve GPU Performance

Getting Started with GPU Benchmarking
You can use various benchmark tests in MATLAB to measure the performance of your GPU:

• Use gpuBench in MATLAB Central File Exchange to do various tests, including both memory and
compute intensive tasks in both single and double precision. Compare the performance of a
display card with a compute card. For more information, see https://www.mathworks.com/
matlabcentral/fileexchange/34080-gpubench.

• Use the paralleldemo_gpu_bench script in “Measuring GPU Performance” to obtain
information on your PCI bus speed, GPU memory read/write and peak calculation performances
for double precision matrix calculations.

Improve Performance Using Single Precision Calculations
You can improve the performance of your GPU by doing your calculations in single precision instead
of double precision. In CPU computations, on the other hand, you do not get this improvement when
switching from double to single precision. The reason is that most GPU cards are designed for
graphic display, demanding high single precision performance.

Typical examples of calculations suitable for single-precision computation on the GPU include image
processing and machine learning, see e.g. https://www.mathworks.com/content/dam/mathworks/tag-
team/Objects/d/Deep_Learning_in_Cloud_Whitepaper.pdf. However, other types of calculations, such
as linear algebra problems, typically require double precision processing.

You can get a performance improvement of up to a factor of 50 for single compared to double
precision calculations, depending on the GPU card and total number of cores. High end compute
cards typically show a smaller improvement. You can determine the performance improvement of
your particular GPU by using gpuBench, see https://www.mathworks.com/matlabcentral/
fileexchange/34080-gpubench.

For a comprehensive performance overview of NVIDIA GPU cards, see https://en.wikipedia.org/wiki/
List_of_Nvidia_graphics_processing_units. You can calculate the performance improvement factor
between single precision and double precision as follows:

• Find the GPU on the wiki page above.
• Get the stated single and double precision performance values from the table. If there is no double

precision GFLOPS value, assume the ratio is 24‐32x slower for double precision.
• Divide the stated single precision GFLOPS value by the double precision GFLOPS value.

Note If you have a mobile graphics card in your laptop, you can use this card for GPU computing.
However, the laptop GPU is likely to be much less powerful than the desktop machine equivalent and
so performance is reduced.

Basic Workflow for Improving Performance
The purpose of GPU computing in MATLAB is to speed up your applications. This topic discusses
fundamental concepts and practices that can help you achieve better performance on the GPU, such
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as the configuration of the GPU hardware and best practices within your code. It discusses the trade-
off between implementation difficulty and performance, and describes the criteria you might use to
choose between using gpuArray functions, arrayfun, MEX-files, or CUDA kernels. Finally, it
describes how to accurately measure performance on the GPU.

When converting MATLAB code to run on the GPU, it is best to start with MATLAB code that already
performs well. While the GPU and CPU have different performance characteristics, the general
guidelines for writing good MATLAB code also help you write good MATLAB code for the GPU. The
first step is almost always to profile your CPU code. The lines of code that the profiler shows taking
the most time on the CPU will likely be ones that you must concentrate on when you code for the
GPU.

It is easiest to start converting your code using MATLAB built-in functions that support gpuArray
data. These functions take gpuArray inputs, perform calculations on the GPU, and return gpuArray
outputs. A list of the MATLAB functions that support gpuArray data is found in “Run MATLAB
Functions on a GPU” on page 8-9. In general, these functions support the same arguments and data
types as standard MATLAB functions that are calculated on the CPU.

If all the functions that you want to use are supported on the GPU, running code on the GPU may be
as simple as calling gpuArray to transfer input data to the GPU, and calling gather to retrieve the
output data from the GPU when finished. In many cases, you might need to vectorize your code,
replacing looped scalar operations with MATLAB matrix and vector operations. While vectorizing is
generally a good practice on the CPU, it is usually critical for achieving high performance on the GPU.
For more information, see “Vectorize for Improved GPU Performance” on page 8-35.

Advanced Tools for Improving Performance
It is possible that even after converting inputs to gpuArrays and vectorizing your code, there are
operations in your algorithm that are either not built-in functions, or that are not fast enough to meet
your application’s requirements. In such situations you have three main options: use arrayfun to
precompile element-wise parts of your application, make use of GPU library functions, or write a
custom CUDA kernel.

If you have a purely element-wise function, you can improve its performance by calling it with
arrayfun. The arrayfun function on the GPU turns an element-wise MATLAB function into a
custom CUDA kernel, thus reducing the overhead of performing the operation. Often, there is a
subset of your application that can be used with arrayfun even if the entire application cannot be.
The example “Improve Performance of Element-wise MATLAB® Functions on the GPU using
ARRAYFUN” shows the basic concepts of this approach; and the example “Using GPU ARRAYFUN for
Monte-Carlo Simulations” shows how this can be done in simulations for a finance application.

MATLAB provides an extensive library of GPU-enabled functions in Parallel Computing Toolbox,
Image Processing Toolbox, Signal Processing Toolbox, and other products. However, there are many
libraries of additional functions that do not have direct built-in analogs in MATLAB’s GPU support.
Examples include the NVIDIA Performance Primitives library and the CURAND library, which are
included in the CUDA toolkit that ships with MATLAB. If you need to call a function in one of these
libraries, you can do so using the GPU MEX interface. This interface allows you to extract the
pointers to the device data from MATLAB gpuArrays so that you can pass these pointers to GPU
functions. You can convert the returned values into gpuArrays for return to MATLAB. For more
information see “Run MEX-Functions Containing CUDA Code” on page 8-28.

Finally, you have the option of writing a custom CUDA kernel for the operation that you need. Such
kernels can be directly integrated into MATLAB using the CUDAKernel object.
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The example “Illustrating Three Approaches to GPU Computing: The Mandelbrot Set” shows how to
implement a simple calculation using three of the approaches mentioned in this section. This example
begins with MATLAB code that is easily converted to run on the GPU, rewrites the code to use
arrayfun for element-wise operations, and finally shows how to integrate a custom CUDA kernel for
the same operation.

Alternately, you can write a CUDA kernel as part of a MEX-file and call it using the CUDA Runtime
API inside the MEX-file. Either of these approaches might let you work with low-level features of the
GPU, such as shared memory and texture memory, that are not directly available in MATLAB code.
For more details, see the example “Accessing Advanced CUDA Features Using MEX”.

Best Practices for Improving Performance
Hardware Configuration

In general you can achieve the best performance when your GPU is dedicated to computing. It is
usually not practical to use the same GPU device for both computations and graphics, because of the
amount of memory taken up for problems of reasonable size and the constant use of the device by the
system for graphics. If possible, obtain a separate device for graphics. Details of configuring your
device for compute or graphics depend on the operating system and driver version.

On Windows systems, a GPU device can be in one of two modes: Windows Display Driver Model
(WDDM) or Tesla Compute Cluster (TCC) mode. For best performance, any devices used for
computing should be in TCC mode. Consult NVIDIA documentation for more details.

NVIDIA’s highest-performance compute devices, the Tesla line, support error correcting codes (ECC)
when reading and writing GPU memory. The purpose of ECC is to correct for occasional bit-errors
that occur normally when reading or writing dynamic memory. One technique to improve
performance is to turn off ECC to increase the achievable memory bandwidth. While the hardware
can be configured this way, MathWorks does not recommend this practice. The potential loss of
accuracy due to silent errors can be more harmful than the performance benefit.

MATLAB Coding Practices

This topic describes general techniques that help you achieve better performance on the GPU. Some
of these tips apply when writing MATLAB code for the CPU as well.

Data in MATLAB arrays is stored in column-major order. Therefore, it is beneficial to operate along
the first or column dimension of your array. If one dimension of your data is significantly longer than
others, you might achieve better performance if you make that the first dimension. Similarly, if you
frequently operate along a particular dimension, it is usually best to have it as the first dimension. In
some cases, if consecutive operations target different dimensions of an array, it might be beneficial to
transpose or permute the array between these operations.

GPUs achieve high performance by calculating many results in parallel. Thus, matrix and higher-
dimensional array operations typically perform much better than operations on vectors or scalars.
You can achieve better performance by rewriting your loops to make use of higher-dimensional
operations. The process of revising loop-based, scalar-oriented code to use MATLAB matrix and
vector operations is called vectorization. For more details, see “Using Vectorization” (MATLAB).

By default, all operations in MATLAB are performed in double-precision floating-point arithmetic.
However, most operations support a variety of data types, including integer and single-precision
floating-point. Today’s GPUs and CPUs typically have much higher throughput when performing
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single-precision operations, and single-precision floating-point data occupies less memory. If your
application’s accuracy requirements allow the use of single-precision floating-point, it can greatly
improve the performance of your MATLAB code.

The GPU sits at the end of a data transfer mechanism known as the PCI bus. While this bus is an
efficient, high-bandwidth way to transfer data from the PC host memory to various extension cards, it
is still much slower than the overall bandwidth to the global memory of the GPU device or of the CPU
(for more details, see the example “Measuring GPU Performance”). In addition, transfers from the
GPU device to MATLAB host memory cause MATLAB to wait for all pending operations on the device
to complete before executing any other statements. This can significantly hurt the performance of
your application. In general, you should limit the number of times you transfer data between the
MATLAB workspace and the GPU. If you can transfer data to the GPU once at the start of your
application, perform all the calculations you can on the GPU, and then transfer the results back into
MATLAB at the end, that generally results in the best performance. Similarly, when possible it helps
to create arrays directly on the GPU, using either the 'gpuArray' or the 'like' option for functions
such as zeros (e.g., Z = zeros(___,'gpuArray') or Z = zeros(N,'like',g) for existing
gpuArray g).

Measure Performance on the GPU
The best way to measure performance on the GPU is to use gputimeit. This function takes as input
a function handle with no input arguments, and returns the measured execution time of that function.
It takes care of such benchmarking considerations as repeating the timed operation to get better
resolution, executing the function before measurement to avoid initialization overhead, and
subtracting out the overhead of the timing function. Also, gputimeit ensures that all operations on
the GPU have completed before the final timing.

For example, consider measuring the time taken to compute the lu factorization of a random matrix
A of size N-by-N. You can do this by defining a function that does the lu factorization and passing the
function handle to gputimeit:

A = rand(N,'gpuArray');
fh = @() lu(A);
gputimeit(fh,2); % 2nd arg indicates number of outputs

You can also measure performance with tic and toc. However, to get accurate timing on the GPU,
you must wait for operations to complete before calling toc. There are two ways to do this. You can
call gather on the final GPU output before calling toc: this forces all computations to complete
before the time measurement is taken. Alternately, you can use the wait function with a gpuDevice
object as its input. For example, if you wanted to measure the time taken to compute the lu
factorization of matrix A using tic, toc, and wait, you can do it as follows:

gd = gpuDevice();
tic();
[l,u] = lu(A);
wait(gd);
tLU = toc();

You can also use the MATLAB profiler to show how computation time is distributed in your GPU code.
Note, that to accomplish timing measurements, the profiler runs each line of code independently, so it
cannot account for overlapping (asynchronous) execution such as might occur during normal
operation. For timing whole algorithms, you should use tic and toc, or gputimeit, as described
above. Also, the profile might not yield correct results for user-defined MEX functions if they run
asynchronously.
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Vectorize for Improved GPU Performance
This example shows you how to improve performance by running a function on the GPU instead of the
CPU, and by vectorizing the calculations.

Consider a function that performs fast convolution on the columns of a matrix. Fast convolution,
which is a common operation in signal processing applications, transforms each column of data from
the time domain to the frequency domain, multiplies it by the transform of a filter vector, transforms
back to the time domain, and stores the result in an output matrix.

function y = fastConvolution(data,filter)
[m,n] = size(data);
% Zero-pad filter to the column length of data, and transform
filter_f = fft(filter,m);

% Create an array of zeros of the same size and class as data
y = zeros(m,n,'like',data);

% Transform each column of data
for ix = 1:n
    af = fft(data(:,ix));
    y(:,ix) = ifft(af .* filter_f);
end
end

Execute this function in the CPU on data of a particular size, and measure the execution time using
the MATLAB timeit function. The timeit function takes care of common benchmarking
considerations, such as accounting for startup and overhead.

a = complex(randn(4096,100),randn(4096,100));  % Data input
b = randn(16,1);                               % Filter input
c = fastConvolution(a,b);                      % Calculate output
ctime = timeit(@()fastConvolution(a,b));       % Measure CPU time
disp(['Execution time on CPU = ',num2str(ctime)]);

On a sample machine, this code displays the output:

Execution time on CPU = 0.019335

Now execute this function on the GPU. You can do this easily by changing the input data to be
gpuArrays rather than normal MATLAB arrays. The 'like' syntax used when creating the output
inside the function ensures that y will be a gpuArray if data is a gpuArray.

ga = gpuArray(a);                              % Move array to GPU
gb = gpuArray(b);                              % Move filter to GPU
gc = fastConvolution(ga,gb);                   % Calculate on GPU
gtime = gputimeit(@()fastConvolution(ga,gb));  % Measure GPU time
gerr = max(max(abs(gather(gc)-c)));            % Calculate error
disp(['Execution time on GPU = ',num2str(gtime)]);
disp(['Maximum absolute error = ',num2str(gerr)]);

On the same machine, this code displays the output:

Execution time on CPU = 0.019335
Execution time on GPU = 0.027235
Maximum absolute error = 1.1374e-14
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Unfortunately, the GPU is slower than the CPU for this problem. The reason is that the for-loop is
executing the FFT, multiplication, and inverse FFT operations on individual columns of length 4096.
The best way to increase the performance is to vectorize the code, so that a single MATLAB function
call performs more calculation. The FFT and IFFT operations are easy to vectorize: fft(A) computes
the FFT of each column of a matrix A. You can perform a multiply of the filter with every column in a
matrix at once using the MATLAB binary scalar expansion function bsxfun. The vectorized function
looks like this:

function y = fastConvolution_v2(data,filter)
m = size(data,1);
% Zero-pad filter to the length of data, and transform
filter_f = fft(filter,m);

% Transform each column of the input
af = fft(data);

% Multiply each column by filter and compute inverse transform
y = ifft(bsxfun(@times,af,filter_f));
end

Perform the same experiment using the vectorized function:

a = complex(randn(4096,100),randn(4096,100));   % Data input
b = randn(16,1);                                % Filter input
c = fastConvolution_v2(a,b);                    % Calculate output
ctime = timeit(@()fastConvolution_v2(a,b));     % Measure CPU time
disp(['Execution time on CPU = ',num2str(ctime)]);

ga = gpuArray(a);                               % Move data to GPU
gb = gpuArray(b);                               % Move filter to GPU
gc = fastConvolution_v2(ga, gb);                % Calculate on GPU
gtime = gputimeit(@()fastConvolution_v2(ga,gb));% Measure GPU time
gerr = max(max(abs(gather(gc)-c)));             % Calculate error
disp(['Execution time on GPU = ',num2str(gtime)]);
disp(['Maximum absolute error = ',num2str(gerr)]);

Execution time on CPU = 0.010393
Execution time on GPU = 0.0020537
Maximum absolute error = 1.1374e-14

In conclusion, vectorizing the code helps both the CPU and GPU versions to run faster. However,
vectorization helps the GPU version much more than the CPU. The improved CPU version is nearly
twice as fast as the original; the improved GPU version is 13 times faster than the original. The GPU
code went from being 40% slower than the CPU in the original version, to about five times faster in
the revised version.

Troubleshooting GPUs
If you only have one GPU in your machine, then it is likely that your graphics card is also acting as
your display card. In this case, your GPU is probably subject to timeout imposed by the operating
system (OS). You can examine this for your GPU as follows:

gpuDevice

ans =

...
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KernelExecutionTimeout: 1

If KernelExecutionTimeout = 1, then your GPU is subject to timeout imposed by the OS,
ensuring that the OS is always able to print updates to the screen. If your GPU calculation takes too
much time, then the operation is killed. In this case, you must restart MATLAB to resume GPU
calculations successfully.

See Also
gpuDevice

More About
• “GPU Capabilities and Performance” on page 8-2
• “Establish Arrays on a GPU” on page 8-3
• “Run MATLAB Functions on a GPU” on page 8-9
• “Identify and Select a GPU Device” on page 8-19

 Measure and Improve GPU Performance

8-37



GPU Support by Release
To use your GPU with MATLAB, you must install a recent graphics driver. Best practice is to ensure
you have the latest driver for your device. Installing the driver is sufficient for most uses of GPUs in
MATLAB, including gpuArray and GPU-enabled MATLAB functions. You can download the latest
drivers for your GPU device at NVIDIA Driver Downloads.

Supported GPUs
To see support for NVIDIA GPU architectures by MATLAB release, consult the following table.

•
 – Built-in binary support.

•
 – Supported by NVIDIA's forward compatibility (requires recompilation). The MATLAB

release was built before this GPU architecture was available. The CUDA driver must recompile the
GPU libraries because your device is more recent than the libraries. The first time you access the
GPU from MATLAB, the compilation can take several minutes. Increase the CUDA cache size to
prevent a recurrence of this delay. For instructions, see “Increase the CUDA Cache Size” on page
8-39.

•
 – Support for Kepler and Maxwell GPU architectures will be removed in a future release. At

that time, using a GPU with MATLAB will require a GPU device with compute capability 6.0 or
greater. In R2020a, Kepler and Maxwell GPUs are still supported. MATLAB generates a warning
the first time you use a Kepler or Maxwell GPU.

The cc numbers show the compute capability of the GPU architecture. To check your GPU compute
capability, see ComputeCapability in the output of the gpuDevice function. Alternatively, see
CUDA GPUs (NVIDIA).

MATLAB
Release

Turing
(cc7.5)

Volta
(cc7.0,
cc7.2)

Pascal
(cc6.x)

Maxwell
(cc5.x)

Kepler
(cc3.x)

Fermi
(cc2.x)

Tesla
(cc1.3)

CUDA
Toolkit
Version

R2020a   10.1

R2019b   10.1

R2019a   10.0

R2018b   9.1

R2018a   9.0

R2017b  8.0

R2017a  8.0

R2016b  7.5

R2016a  7.5
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MATLAB
Release

Turing
(cc7.5)

Volta
(cc7.0,
cc7.2)

Pascal
(cc6.x)

Maxwell
(cc5.x)

Kepler
(cc3.x)

Fermi
(cc2.x)

Tesla
(cc1.3)

CUDA
Toolkit
Version

R2015b  7.0

R2015a  6.5

R2014b  6.0

R2014a 5.5

R2013b 5.0

R2013a 5.0

R2012b 4.2

R2012a 4.0

R2011b 4.0

R2011a 3.2

R2010b 3.1

CUDA Toolkit
If you want to use CUDAKernel objects or use GPU Coder, you must install a CUDA Toolkit. The CUDA
Toolkit contains CUDA libraries and tools for compilation.

Task Requirements
Use gpuArray and GPU-enabled MATLAB
functions, or create CUDA enabled MEX-
functions.

Get the latest graphics driver at NVIDIA Driver
Downloads.

You do not need the CUDA Toolkit as well.
Create and use CUDAKernel objects or use GPU
Coder.

Install the version of the CUDA Toolkit supported
by your MATLAB release.

For more information about generating CUDA code in MATLAB, see “Run MEX-Functions Containing
CUDA Code” on page 8-28 and “Run CUDA or PTX Code on GPU” on page 8-20. Not all compilers
supported by the CUDA Toolkit are supported in MATLAB.

For more information about the CUDA Toolkit and to download your supported version, see CUDA
Toolkit Archive (NVIDIA).

Increase the CUDA Cache Size
If your GPU architecture does not have built-in binary support in your MATLAB release, the graphics
driver must compile and cache the GPU libraries. This process can take a few minutes the first time
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you access the GPU from MATLAB. To increase the CUDA cache size to prevent a recurrence of this
delay, set the environment variable CUDA_CACHE_MAXSIZE to a minimum of 536870912 (512 MB).
For help setting an environment variable, see this example: “Set the MATLABPATH Environment
Variable” (MATLAB).

See Also

Related Examples
• “Identify and Select a GPU Device” on page 8-19

External Websites
• Deep Learning with GPUs and MATLAB
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ClusterPool
Parallel pool of workers on a cluster of machines

Description
Use parpool to create a parallel pool of workers on a cluster of machines. After you create the pool,
parallel pool features, such as parfor or parfeval, run on the workers. With the ClusterPool
object, you can interact with the parallel pool.

Creation
Create a parallel pool on a cluster of machines by using the parpool function.

pool = parpool("myCluster")

where myCluster is the name of a cluster profile for a cluster of machines.

Properties
AttachedFiles — Files and folders copied to workers
cell array of character vectors

Files and folders copied to workers, specified as a cell array of character vectors. To attach files and
folders to the pool, use addAttachedFiles.

AutoAddClientPath — Indication whether user-added entries on client path are added to
worker paths
true (default) | false

This property is read-only.

Indication whether user-added entries on client path are added to worker paths, specified as a logical
value.
Data Types: logical

Cluster — Cluster on which the parallel pool is running
cluster object

This property is read-only.

Cluster on which the parallel pool is running, specified as a parallel.Cluster object.

Connected — Flag that indicates whether the parallel pool is running
true | false

This property is read-only.

Flag that indicates whether the parallel pool is running, specified as a logical value.
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Data Types: logical

EnvironmentVariables — Environment variables copied to the workers
cell array of character vectors

This property is read-only.

Environment variables copied to the workers, specified as a cell array of character vectors.

FevalQueue — Queue of FevalFutures to run on the parallel pool
FevalQueue

This property is read-only.

Queue of FevalFutures to run on the parallel pool, specified as an FevalQueue object. You can use
this property to check the pending and running future variables of the parallel pool. To create future
variables, use parfeval and parfevalOnAll. For more information on future variables, see
Future.
Data Types: FevalQueue

IdleTimeout — Time after which the pool shuts down if idle
nonnegative integer

Time in minutes after which the pool shuts down if idle, specified as an integer greater than zero. A
pool is idle if it is not running code on the workers. By default 'IdleTimeout' is the same as the
value in your parallel preferences. For more information on parallel preferences, see “Specify Your
Parallel Preferences” on page 5-9.

NumWorkers — Number of workers comprising the parallel pool
integer

This property is read-only.

Number of workers comprising the parallel pool, specified as an integer.

SpmdEnabled — Indication if pool can run spmd code
true (default) | false

This property is read-only.

Indication if pool can run spmd code, specified as a logical value.
Data Types: logical

Object Functions
addAttachedFiles Attach files or folders to parallel pool
delete Shut down parallel pool
listAutoAttachedFiles List of files automatically attached to job, task, or parallel pool
parfeval Execute function asynchronously on parallel pool worker
parfevalOnAll Execute function asynchronously on all workers in parallel pool
ticBytes Start counting bytes transferred within parallel pool
tocBytes Read how many bytes have been transferred since calling ticBytes
updateAttachedFiles Update attached files or folders on parallel pool
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See Also
parpool

Topics
“Run Code on Parallel Pools” on page 2-56
“Choose Between Thread-Based and Process-Based Environments” on page 2-61

Introduced in R2020a
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codistributed
Access elements of arrays distributed among workers in parallel pool

Constructor
codistributed, codistributed.build

You can also create a codistributed array explicitly from spmd code or a communicating job task with
any of several MATLAB functions.

eye(___,'codistributed') rand(___,'codistributed')
false(___,'codistributed') randi(___,'codistributed')
Inf(___,'codistributed') randn(___,'codistributed')
NaN(___,'codistributed') codistributed.cell
ones(___,'codistributed') codistributed.spalloc
true(___,'codistributed') codistributed.speye
zeros(___,'codistributed') codistributed.sprand
 codistributed.sprandn

Description
Arrays partitioned among the workers in a pool, are accessible from the workers as codistributed
array objects.

Codistributed arrays on workers that you create inside spmd statements or from within task functions
of communicating jobs can be accessed as distributed arrays on the client.

 codistributed
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Methods

classUnderlying Class of elements within gpuArray or distributed array
codistributed.cell Create codistributed cell array
codistributed.colon Distributed colon operation
codistributed.spalloc Allocate space for sparse codistributed matrix
codistributed.speye Create codistributed sparse identity matrix
codistributed.sprand Create codistributed sparse array of uniformly distributed pseudo-random

values
codistributed.sprandn Create codistributed sparse array of uniformly distributed pseudo-random

values
eye Identity matrix
false Array of logical 0 (false)
gather Transfer distributed array or gpuArray to local workspace
getCodistributor Codistributor object for existing codistributed array
getLocalPart Local portion of codistributed array
globalIndices Global indices for local part of codistributed array
Inf Array of infinity
isaUnderlying True if distributed array's underlying elements are of specified class
iscodistributed True for codistributed array
NaN Array of Not-a-Numbers
ones Array of ones
rand Array of rand values
randi Array of random integers
randn Array of randn values
redistribute Redistribute codistributed array with another distribution scheme
sparse Create sparse distributed or codistributed matrix
true Array of logical 1 (true)
zeros Array of zeros

The methods for codistributed arrays are too numerous to list here. Most resemble and behave the
same as built-in MATLAB functions. See “Run MATLAB Functions with Distributed Arrays” on page 4-
19.

Also among the methods there are several for examining the characteristics of the array itself. Most
behave like the MATLAB functions of the same name:

Function Description
classUnderlying Class (data type) of the elements in the array
iscodistributed Indication if array is codistributed
isreal Indication if array elements are real
length Length of vector or largest array dimension
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Function Description
ndims Number of dimensions in the array
size Size of array dimensions

Introduced in R2008b
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codistributor1d
1-D distribution scheme for codistributed array

Constructor
codistributor1d

Description
A codistributor1d object defines the 1-D distribution scheme for a codistributed array. The 1-D
codistributor distributes arrays along a single specified dimension, the distribution dimension, in a
noncyclic, partitioned manner.

For help on codistributor1d, including a list of links to individual help for its methods and properties,
type

help codistributor1d

Methods
codistributor1d.defaultPartition  

Default partition for codistributed array
globalIndices Global indices for local part of codistributed array
isComplete True if codistributor object is complete

Properties
Property Description
Dimension Distributed dimension of codistributor1d object
Partition Partition scheme of codistributor1d object

Introduced in R2009b
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codistributor2dbc
2-D block-cyclic distribution scheme for codistributed array

Constructor
codistributor2dbc

Description
A codistributor2dbc object defines the 2-D block-cyclic distribution scheme for a codistributed array.
The 2-D block-cyclic codistributor can only distribute two-dimensional matrices. It distributes
matrices along two subscripts over a rectangular computational grid of labs in a blocked, cyclic
manner. The parallel matrix computation software library called ScaLAPACK uses the 2-D block-cyclic
codistributor.

For help on codistributor2dbc, including a list of links to individual help for its methods and
properties, type

help codistributor2dbc

Methods
codistributor2dbc.defaultLabGrid  

Default computational grid for 2-D block-cyclic distributed arrays
globalIndices Global indices for local part of codistributed array
isComplete True if codistributor object is complete

Properties
Property Description
BlockSize Block size of codistributor2dbc object
LabGrid Lab grid of codistributor2dbc object
Orientation Orientation of codistributor2dbc object

Introduced in R2009b
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Composite
Access nondistributed variables on multiple workers from client

Constructor
Composite

Description
Variables that exist on the workers running an spmd statement are accessible on the client as a
Composite object. A Composite resembles a cell array with one element for each worker. So for
Composite C:

C{1} represents value of C on worker1
C{2} represents value of C on worker2
etc.

spmd statements create Composites automatically, which you can access after the statement
completes. You can also create a Composite explicitly with the Composite function.

Methods
exist Check whether Composite is defined on workers
subsasgn Subscripted assignment for Composite
subsref Subscripted reference for Composite

Other methods of a Composite object behave similarly to these MATLAB array functions:

disp, display Display Composite
end Indicate last Composite index
isempty Determine whether Composite is empty
length Length of Composite
ndims Number of Composite dimensions
numel Number of elements in Composite
size Composite dimensions

Introduced in R2008b
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CUDAKernel
Kernel executable on GPU

Constructor
parallel.gpu.CUDAKernel

Description
A CUDAKernel object represents a CUDA kernel, that can execute on a GPU. You create the kernel
when you compile PTX or CU code, as described in “Run CUDA or PTX Code on GPU” on page 8-20.

Methods

existsOnGPU Determine if gpuArray or CUDAKernel is available on GPU
feval Evaluate kernel on GPU
setConstantMemory Set some constant memory on GPU

Properties
A CUDAKernel object has the following properties:

Property Name Description
ThreadBlockSize Size of block of threads on the kernel. This can be an integer vector of

length 1, 2, or 3 (since thread blocks can be up to 3-dimensional). The
product of the elements of ThreadBlockSize must not exceed the
MaxThreadsPerBlock for this kernel, and no element of
ThreadBlockSize can exceed the corresponding element of the
GPUDevice property MaxThreadBlockSize.

MaxThreadsPerBlock Maximum number of threads permissible in a single block for this CUDA
kernel. The product of the elements of ThreadBlockSize must not exceed
this value.

GridSize Size of grid (effectively the number of thread blocks that will be launched
independently by the GPU). This is an integer vector of length 3. None of
the elements of this vector can exceed the corresponding element in the
vector of the MaxGridSize property of the GPUDevice object.

SharedMemorySize The amount of dynamic shared memory (in bytes) that each thread block
can use. Each thread block has an available shared memory region. The size
of this region is limited in current cards to ~16 kB, and is shared with
registers on the multiprocessors. As with all memory, this needs to be
allocated before the kernel is launched. It is also common for the size of this
shared memory region to be tied to the size of the thread block. Setting this
value on the kernel ensures that each thread in a block can access this
available shared memory region.

 CUDAKernel
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Property Name Description
EntryPoint (read-only) A character vector containing the actual entry point name in the

PTX code that this kernel is going to call. An example might look like
'_Z13returnPointerPKfPy'.

MaxNumLHSArguments (read-only) The maximum number of left hand side arguments that this
kernel supports. It cannot be greater than the number of right hand side
arguments, and if any inputs are constant or scalar it will be less.

NumRHSArguments (read-only) The required number of right hand side arguments needed to
call this kernel. All inputs need to define either the scalar value of an input,
the elements for a vector input/output, or the size of an output argument.

ArgumentTypes (read-only) Cell array of character vectors, the same length as
NumRHSArguments. Each of the character vectors indicates what the
expected MATLAB type for that input is (a numeric type such as uint8,
single, or double followed by the word scalar or vector to indicate if
we are passing by reference or value). In addition, if that argument is only
an input to the kernel, it is prefixed by in; and if it is an input/output, it is
prefixed by inout. This allows you to decide how to efficiently call the
kernel with both MATLAB arrays and gpuArray, and to see which of the
kernel inputs are being treated as outputs.

See Also
gpuArray, GPUDevice

Introduced in R2011b
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distributed
Access elements of distributed arrays from client

Constructor
distributed

You can also create a distributed array explicitly from the client with any of several MATLAB
functions, shown in the table.

eye(___,'distributed') true(___,'distributed')
false(___,'distributed') zeros(___,'distributed')
Inf(___,'distributed') distributed.cell
NaN(___,'distributed') distributed.spalloc
ones(___,'distributed') distributed.speye
rand(___,'distributed') distributed.sprand
randi(___,'distributed') distributed.sprandn
randn(___,'distributed')  

Description
Distributed arrays represent those arrays which are partitioned out among the workers in a parallel
pool. A distributed array resembles a normal MATLAB array in the way you index and manipulate its
elements, but none of its elements exists on the client.

Codistributed arrays that you create inside spmd statements are accessible as distributed arrays from
the client.

Use the gather function to retrieve distributed arrays into the client work space.

 distributed
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Methods

classUnderlying Class of elements within gpuArray or distributed array
distributed.cell Create distributed cell array
distributed.spalloc Allocate space for sparse distributed matrix
distributed.speye Create distributed sparse identity matrix
distributed.sprand Create distributed sparse array of uniformly distributed pseudo-random values
distributed.sprandn Create distributed sparse array of normally distributed pseudo-random values
eye Identity matrix
false Array of logical 0 (false)
gather Transfer distributed array or gpuArray to local workspace
Inf Array of infinity
isaUnderlying True if distributed array's underlying elements are of specified class
isdistributed True for distributed array
NaN Array of Not-a-Numbers
ones Array of ones
rand Array of rand values
randi Array of random integers
randn Array of randn values
sparse Create sparse distributed or codistributed matrix
true Array of logical 1 (true)
write Write distributed data to an output location
zeros Array of zeros

The methods for distributed arrays are too numerous to list here. Most resemble and behave the
same as built-in MATLAB functions. See “Run MATLAB Functions with Distributed Arrays” on page 4-
19.

Also among the methods are several for examining the characteristics of the array itself. Most behave
like the MATLAB functions of the same name:

Function Description
classUnderlying Class (data type) of the elements in the array
isdistributed Indication if array is distributed
isreal Indication if array elements are real
length Length of vector or largest array dimension
ndims Number of dimensions in the array
size Size of array dimensions

Introduced in R2008a
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Future
Request function execution on parallel pool workers or MATLAB client

Description
A Future object represents a function to be executed on parallel pool workers or the MATLAB client.

Creation
There are several ways to create a Future object:

• Specify a function to be executed on a worker in a parallel pool using parfeval. The parfeval
function creates a FevalFuture object to represent the function execution and hold the results.
To create multiple FevalFutures, call parfeval multiple times; for example, you can create a
vector of FevalFutures in a for-loop.

• Specify a function to be executed on every worker in a parallel pool using parfevalOnAll. The
parfevalOnAll function creates a FevalOnAllFuture object to represent the function
execution and hold the results.

• Specify a function to be executed on the MATLAB client after all Future objects complete using
afterAll. The afterAll function creates an AfterAllFuture object to represent the function
execution and hold the results.

• Specify a function to be executed on the MATLAB client after each Future object complete using
afterEach. The afterEach function creates an AfterEachFuture object to represent the
function execution and hold the results.

In summary, the following table describes the available types of future objects:

Future Object Description
FevalFuture Single parfeval Future instance
FevalOnAllFuture parfevalOnAll Future instance
AfterAllFuture afterAll Future instance
AfterEachFuture afterEach Future instance

Future objects are local objects and can be accessed only in the MATLAB session that created it.

Properties
General Options

CreateDateTime — Date and time when this future was created
datetime

This property is read-only.

Date and time when this future was created, specified as a datetime object.

 Future
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Data Types: datetime

Error — Error information
exception

This property is read-only.

Error information, specified as an exception. If the Future completes with no error, then this field is
empty.

FinishDateTime — Date and time when this future finished running
datetime

This property is read-only.

Date and time when this future finished running, specified as a datetime object.
Data Types: datetime

Function — Function to evaluate
function_handle

This property is read-only.

Function to evaluate, specified as a function handle.
Example: @rand
Data Types: function_handle

ID — Numeric identifier for the future
integer

This property is read-only.

Numeric identifier for the future, specified as an integer.
Data Types: double

InputArguments — Input arguments to function
cell array

This property is read-only.

Input arguments to the function to execute, specified as a cell array.
Example: {[1]}
Example: {[1,2], [2,1]}
Data Types: cell

NumOutputArguments — Number of arguments returned by function
integer

This property is read-only.

Number of arguments returned by the function to execute, specified as an integer.
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Data Types: double

OutputArguments — Output arguments from running function
cell array

This property is read-only.

Output arguments, specified as a cell array of results from the running function after it finishes
execution. If the Future completes with errors, this field is empty. To see the error, check the Error
property.
Example: {[3.14]}
Data Types: cell

StartDateTime — Date and time when this future started running
datetime

This property is read-only.

Date and time when this future started running, specified as a datetime object.
Data Types: datetime

State — Current state of future
'pending' | 'queued' | 'running' | 'finished' | 'failed' | 'unavailable'

This property is read-only.

Current state of the future, specified as one of these values: 'pending', 'queued', 'running',
'finished', 'failed', or 'unavailable'.
Data Types: char

FevalFuture Options

Diary — Text produced by execution of function
character array

This property is read-only.

Text produced by execution of function, specified as a char array.
Data Types: char

Parent — Queue of Future objects that contains the future
FevalQueue

This property is read-only.

Queue of Future objects that contains this Future, specified as a FevalQueue. Check this queue to
identify the number of Future objects running or queued.
Data Types: FevalQueue

Read — Indication if outputs have been read
logical

This property is read-only.
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Indication if outputs have been read by fetchNext or fetchOutputs, specified as a logical.
Data Types: logical

FevalOnAllFuture Options

Diary — Text produced by execution of function
cell array of character arrays

This property is read-only.

Text produced by execution of the function, specified as a cell array of character arrays that contains
the text for each worker.
Data Types: cell

Parent — Queue of Future objects that contains the future
FevalQueue

This property is read-only.

Queue of Future objects that contains this Future, specified as a FevalQueue. Check this queue to
identify the number of Future objects running or queued.
Data Types: FevalQueue

Object Functions

General Functions
afterAll Specify a function to invoke after all parallel.Futures complete
afterEach Specify a function to invoke after each parallel.Future completes
cancel Cancel queued or running future
fetchOutputs Retrieve all output arguments from Future
isequal True if futures have same ID
wait Wait for futures to complete

FevalFuture Only
fetchNext Retrieve next available unread FevalFuture outputs

Examples

Combine afterEach and afterAll

You can combine afterEach and afterAll to automatically invoke more functions on the results of
futures. Both afterEach and afterAll generate future variables that can be used again in
afterEach and afterAll.

Use parfeval to compute random vectors in the workers. With default preferences, parfeval
creates a parpool automatically if there is not one already created.

for idx= 1:10
    f(idx) = parfeval(@rand, 1, 1000, 1);
end
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Starting parallel pool (parpool) using the 'local' profile ...
connected to 8 workers.

Compute the largest element in each of those vectors when they become ready. afterEach executes
the function handle on the output of each future when they become ready and creates another future
to hold the results.

maxFuture = afterEach(f, @(r) max(r), 1);

To compute the minimum value among them, call afterAll on this new future. afterAll executes a
function on the combined output arguments of all the futures after they all complete. In this case,
afterAll executes the function min on the outputs of maxFuture after completing and creates
another future to hold the result.

minFuture = afterAll(maxFuture, @(r) min(r), 1);

You can fetch the result using fetchOutputs. fetchOutput waits until the future completes to
gather the results.

fetchOutputs(minFuture)

ans = 0.9973

You can check the result of afterEach by calling fetchOutputs on its future variable.

fetchOutputs(maxFuture)

ans = 10×1

    0.9996
    0.9989
    0.9994
    0.9973
    1.0000
    1.0000
    0.9989
    0.9994
    0.9998
    0.9999

See Also
afterAll | afterEach | parallel.Pool | parfeval | parfevalOnAll

Introduced in R2013b
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gpuArray
Array stored on GPU

Description
A gpuArray object represents an array stored on the GPU. To work with gpuArray objects, use any
GPU-enabled MATLAB function. You can use the array for direct calculations or in CUDA kernels that
execute on the GPU. For more information, see “Run MATLAB Functions on a GPU” on page 8-9.

If you want to retrieve the array from the GPU, for example when using a function that does not
support gpuArray objects, use the gather function.

Note You can load MAT files containing gpuArray data as in-memory arrays when a GPU is not
available. A gpuArray loaded without a GPU is limited and you cannot use it for computations. To use
a gpuArray loaded without a GPU, retrieve the contents using gather.

Creation
Use gpuArray to convert an array in the MATLAB workspace into a gpuArray object. Many
MATLAB functions also allow you to create gpuArray objects directly. For more information, see
“Establish Arrays on a GPU” on page 8-3.

Syntax
G = gpuArray(X)

Description

G = gpuArray(X) copies the array X to the GPU and returns a gpuArray object.

Input Arguments

X — Array
numeric array | logical array

Array to transfer to the GPU, specified as a numeric or logical array. The GPU device must have
sufficient free memory to store the data. If X is already a gpuArray object, gpuArray outputs X
unchanged.

You can also transfer sparse arrays to the GPU. gpuArray supports only sparse arrays of double-
precision.
Example: G = gpuArray(magic(3));
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical
Complex Number Support: Yes
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Object Functions
arrayfun Apply function to each element of array on GPU
gather Transfer distributed array or gpuArray to local workspace
pagefun Apply function to each page of array on GPU

There are several methods for examining the characteristics of a gpuArray object. Most behave like
the MATLAB functions of the same name.

classUnderlying Class of elements within gpuArray or distributed array
existsOnGPU Determine if gpuArray or CUDAKernel is available on GPU
isaUnderlying Determine if tall array data is of specified class
isequal Determine array equality
isnumeric Determine whether input is numeric array
issparse Determine whether input is sparse
length Length of largest array dimension
ndims Number of array dimensions
size Array size

Other methods for gpuArray objects are too numerous to list here. Most resemble and behave the
same as the MATLAB functions of the same name. See “Run MATLAB Functions on a GPU” on page 8-
9.

Examples

Use MATLAB Functions with a GPU

This example shows how to use GPU-enabled MATLAB functions to operate with gpuArrays. You can
check the properties of your GPU using the gpuDevice function.

gpuDevice

ans = 
  CUDADevice with properties:

                      Name: 'GeForce GTX 1080'
                     Index: 1
         ComputeCapability: '6.1'
            SupportsDouble: 1
             DriverVersion: 10.1000
            ToolkitVersion: 10.1000
        MaxThreadsPerBlock: 1024
          MaxShmemPerBlock: 49152
        MaxThreadBlockSize: [1024 1024 64]
               MaxGridSize: [2.1475e+09 65535 65535]
                 SIMDWidth: 32
               TotalMemory: 8.5899e+09
           AvailableMemory: 6.9012e+09
       MultiprocessorCount: 20
              ClockRateKHz: 1733500
               ComputeMode: 'Default'
      GPUOverlapsTransfers: 1
    KernelExecutionTimeout: 1
          CanMapHostMemory: 1
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           DeviceSupported: 1
            DeviceSelected: 1

Create a row vector that repeats values from -15 to 15. To transfer it to the GPU and create a
gpuArray, use the gpuArray function.

X = [-15:15 0 -15:15 0 -15:15];
gpuX = gpuArray(X);
whos gpuX

  Name      Size            Bytes  Class       Attributes

  gpuX      1x95                4  gpuArray              

To operate with gpuArrays, use any GPU-enabled MATLAB function. MATLAB automatically runs
calculations on the GPU. For more information, see “Run MATLAB Functions on a GPU” on page 8-9.
For example, use a combination of diag, expm, mod, round, abs, and fliplr.

gpuE = expm(diag(gpuX,-1)) * expm(diag(gpuX,1));
gpuM = mod(round(abs(gpuE)),2);
gpuF = gpuM + fliplr(gpuM);

Plot the results.

imagesc(gpuF);
colormap(flip(gray));
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If you need to transfer the data back from the GPU, use gather. Gathering back to the CPU can be
costly, and is generally not necessary unless you need to use your result with functions that do not
support gpuArray.

result = gather(gpuF);
whos result

  Name         Size            Bytes  Class     Attributes

  result      96x96            73728  double              

In general there can be differences in the results if you run the code on the CPU, due to numerical
precision and algorithmic differences between GPU and CPU. Answers on CPU and GPU are both
equally valid floating point approximations to the true analytical result, having been subjected to
different roundoff during computation. In this example, the results are integers and round eliminates
the roundoff errors.

Perform a Monte Carlo Integration Using GPU-Enabled Functions

This example shows how to use MATLAB functions and operators with gpuArrays to compute the
integral of a function, using the Monte Carlo integration method.

Define the number of points to sample. Sample points in the domain of the function, the interval
[-1,1] in both x and y coordinates, by creating random points with the rand function. To create a
random array directly on the GPU, use the rand function and specify 'gpuArray'. For more
information, see “Establish Arrays on a GPU” on page 8-3.

n = 1e6;
x = 2*rand(n,1,'gpuArray')-1;
y = 2*rand(n,1,'gpuArray')-1;

Define the function to integrate, and use the Monte Carlo integration formula on it. This function
approximates the value of π by sampling points within the unit circle. Because the code uses GPU-
enabled functions and operators on gpuArrays, the computations automatically run on the GPU. You
can perform binary operations such as element-wise multiplication using the same syntax as MATLAB
arrays use. To learn more about GPU-enabled functions, see “Run MATLAB Functions on a GPU” on
page 8-9.

f = x.^2 + y.^2 <= 1;
result = 4*1/n*f'*ones(n,1,'gpuArray')

result =

    3.1403

Compute the Mandelbrot Set using GPU-Enabled Functions

This example shows how to use GPU-enabled MATLAB functions to compute a well-known
mathematical construction: the Mandelbrot set. Check your GPU using the gpuDevice function.

Define the parameters. The Mandelbrot algorithm iterates over a grid of real and imaginary parts.
The following code defines the number of iterations, grid size, and grid limits.
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maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161, -0.748766707771757];
ylim = [ 0.123640844894862,  0.123640851045266]; 

You can use the gpuArray function to transfer data to the GPU and create a gpuArray, or you can
create an array directly on the GPU. gpuArray provides GPU versions of many functions that you can
use to create data arrays, such as linspace. For more information, see “Create GPU Arrays
Directly” on page 8-4.

x = gpuArray.linspace(xlim(1),xlim(2),gridSize);
y = gpuArray.linspace(ylim(1),ylim(2),gridSize);
whos x y

  Name      Size              Bytes  Class       Attributes

  x         1x1000                4  gpuArray              
  y         1x1000                4  gpuArray              

Many MATLAB functions support gpuArrays. When you supply a gpuArray argument to any GPU-
enabled function, the function runs automatically on the GPU. For more information, see “Run
MATLAB Functions on a GPU” on page 8-9. Create a complex grid for the algorithm, and create the
array count for the results. To create this array directly on the GPU, use the ones function, and
specify 'gpuArray'.

[xGrid,yGrid] = meshgrid(x,y);
z0 = complex(xGrid,yGrid);
count = ones(size(z0),'gpuArray');

The following code implements the Mandelbrot algorithm using GPU-enabled functions. Because the
code uses gpuArrays, the calculations happen on the GPU.

z = z0;
for n = 0:maxIterations
    z = z.*z + z0;
    inside = abs(z) <= 2;
    count = count + inside;
end
count = log(count);

When computations are done, plot the results.

imagesc(x,y,count)
colormap([jet();flipud(jet());0 0 0]);
axis off
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Tips
• If you need increased performance, or if a function is not available for GPU, gpuArray supports

the following options:

• To precompile and run purely element-wise code on gpuArray objects, use the arrayfun
function.

• To run C++ code containing CUDA device code or library calls, use a MEX-function. For more
information, see “Run MEX-Functions Containing CUDA Code” on page 8-28.

• To run existing GPU kernels written in CUDA C++, use the MATLAB CUDAKernel interface.
For more information, see “Run CUDA or PTX Code on GPU” on page 8-20.

• To generate CUDA code from MATLAB code, use GPU Coder™. For more information, see “Get
Started with GPU Coder” (GPU Coder).

• You can control the random number stream on the GPU using gpurng.
• None of the following can exceed intmax('int32'):

• The number of elements of a dense array.
• The number of nonzero elements of a sparse array.
• The size in any given dimension. For example, zeros(0,3e9,'gpuArray') is not allowed.
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Alternatives
You can also create a gpuArray object using some MATLAB functions by specifying a gpuArray
output. The following table lists the available MATLAB functions that can create gpuArray objects
directly.

eye(___,'gpuArray') rand(___,'gpuArray')
false(___,'gpuArray') randi(___,'gpuArray')
Inf(___,'gpuArray') randn(___,'gpuArray')
NaN(___,'gpuArray') gpuArray.colon
ones(___,'gpuArray') gpuArray.freqspace
true(___,'gpuArray') gpuArray.linspace
zeros(___,'gpuArray') gpuArray.logspace
 gpuArray.speye

For class-specific help on the functions with the gpuArray prefix, type

help gpuArray.functionname

where functionname is the name of the method. For example, to get help on colon, type

help gpuArray.colon

See Also
arrayfun | existsOnGPU | gather | gpuDevice | gputimeit | pagefun | reset

Topics
“Establish Arrays on a GPU” on page 8-3
“Run MATLAB Functions on a GPU” on page 8-9
“Identify and Select a GPU Device” on page 8-19

Introduced in R2010b

9 Objects

9-26



gpuDevice
Query or select a GPU device

Description
A GPUDevice object represents a graphic processing unit (GPU) in your computer. You can use the
GPU to execute CUDA kernels or MATLAB code.

You can use a GPUDevice object to inspect the properties of your GPU device, reset the GPU device,
or wait for your GPU to finish executing a computation. To obtain a GPUDevice object, use the
gpuDevice function. You can also select or deselect your GPU device using the gpuDevice function.
If you have access to multiple GPUs, use the gpuDevice function to choose a specific GPU device on
which to execute your code.

You do not need to use a GPUDevice object to run functions on a GPU. For more information on how
to use GPU-enabled functions, see “Run MATLAB Functions on a GPU” on page 8-9.

Creation

Syntax
gpuDevice
D = gpuDevice
D = gpuDevice(IDX)
gpuDevice([])

Description

gpuDevice displays the properties of the currently selected GPU device. If there is no currently
selected device, gpuDevice selects the default device without clearing it. Use this syntax when you
want to inspect the properties of your GPU device.

D = gpuDevice returns a GPUDevice object representing the currently selected device. If there is
no currently selected device, gpuDevice selects the default device and returns a GPUDevice object
representing that device without clearing it.

D = gpuDevice(IDX) selects the GPU device specified by index IDX. If the specified GPU device is
not supported, an error occurs. This syntax resets the specified device and clears its memory, even if
the device is already currently selected (equivalent to the reset function). All workspace variables
representing gpuArray or CUDAKernel variables are now invalid and must be cleared from the
workspace or redefined.

gpuDevice([]), with an empty argument (as opposed to no argument), deselects the GPU device
and clears its memory of gpuArray and CUDAKernel variables. This syntax leaves no GPU device
selected as the current device.
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Input Arguments

IDX — Index of the GPU device
integer

Index of the GPU device, specified as an integer in the range 1 to gpuDeviceCount.
Example: gpuDevice(1);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Properties
Name — Name of the GPU device
character array

Name of the GPU device, specified as a character array. The name assigned to the device is derived
from the GPU device model.

Index — Index of the GPU device
integer

Index of the GPU device, specified as an integer in the range 1 to gpuDeviceCount. Use this index
to select a particular GPU device.

ComputeCapability — Computational capability of the GPU device
character array

Computational capability of the GPU device, specified as a character array. To use the selected GPU
device in MATLAB, ComputeCapability must meet the required specification in “GPU Support by
Release” on page 8-38.

SupportsDouble — Support for double precision
0 | 1

Support for double precision operations, specified as the logical values 0 for false or 1 for true.

DriverVersion — Driver version
scalar

GPU device driver version currently in use, specified as a scalar value. To use the selected GPU
device in MATLAB, DriverVersion must meet the required specification in “GPU Support by
Release” on page 8-38.

ToolkitVersion — CUDA toolkit version
scalar

CUDA toolkit version used by the current release of MATLAB, specified as a scalar value.

MaxThreadsPerBlock — Maximum supported number of threads per block
scalar

Maximum supported number of threads per block during CUDAKernel execution, specified as a scalar
value.
Example: 1024
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MaxShmemPerBlock — Maximum supported amount of shared memory
scalar

Maximum supported amount of shared memory that a thread block can use during CUDAKernel
execution, specified as a scalar value.
Example: 49152

MaxThreadBlockSize — Maximum size in each dimension for thread block
vector

Maximum size in each dimension for thread block, specified as a vector. Each dimension of a thread
block must not exceed these dimensions. Also, the product of the thread block size must not exceed
MaxThreadsPerBlock.

MaxGridSize — Maximum size of grid of thread blocks
vector

Maximum size of grid of thread blocks, specified as a vector.

SIMDWidth — Number of simultaneously executing threads
scalar

Number of simultaneously executing threads, specified as a scalar value.

TotalMemory — Total memory
scalar

Total memory (in bytes) on the device, specified as a scalar value.

AvailableMemory — Total memory available for data
scalar

Total memory (in bytes) available for data, specified as a scalar value. This property is available only
for the currently selected device. This value can differ from the value reported by the NVIDIA System
Management Interface due to memory caching.

MultiprocessorCount — Number of streaming multiprocessors
scalar

The number of streaming multiprocessors present on the device, specified as a scalar value.

ClockRateKHz — Peak clock rate
scalar

Peak clock rate of the GPU in kHz, specified as a scalar value.

ComputeMode — Compute mode
character array

The compute mode of the device, specified as one of the following values.
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'Default' The device is not restricted, and multiple
applications can use it simultaneously. MATLAB
can share the device with other applications,
including other MATLAB sessions or workers.

'Exclusive thread' or 'Exclusive
process'

Only one application at a time can use the device.
While the device is selected in MATLAB, other
applications cannot use it, including other
MATLAB sessions or workers.

'Prohibited' The device cannot be used.

GPUOverlapsTransfers — Support for overlapped transfers
0 | 1

Support for overlapped transfers, specified as the logical values 0 or 1.

KernelExecutionTimeout — Timeout for long-running kernels
0 | 1

Timeout for long-running kernels, specified as the logical values 0 or 1. If 1, the operating system
places an upper bound on the time allowed for the CUDA kernel to execute. After this time, the CUDA
driver times out the kernel and returns an error.

CanMapHostMemory — Support for mapping host memory
0 | 1

Support for mapping host memory into the CUDA address space, specified as the logical values 0 or
1.

DeviceSupported — Supported device
0 | 1

Supported device, specified by the logical values 0 or 1. Not all devices are supported; for example,
devices with insufficient ComputeCapability.

DeviceSelected — Currently selected device
0 | 1

Currently selected device, specified by the logical values 0 or 1.

Object Functions
You can identify, select, reset, or wait for a GPU device using the following functions:

gpuDeviceCount Number of GPU devices present
reset Reset GPU device and clear its memory
wait (GPUDevice) Wait for GPU calculation to complete

The following functions are also available:
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parallel.gpu.GPUDevice.isAvailable(idx
)

Returns true if the GPU specified by index idx is
supported and capable of being selected. idx can
be an integer or a vector of integers; the default
index is the current device.

parallel.gpu.GPUDevice.getDevice(idx) Returns a GPUDevice object without selecting it.

For a complete list of functions, use the methods function on the GPUDevice object:

methods('parallel.gpu.GPUDevice')

You can get help on any of the object functions with the following command:

help parallel.gpu.GPUDevice.functionname

where functionname is the name of the function. For example, to get help on isAvailable, type:

help parallel.gpu.GPUDevice.isAvailable

Examples

Identify and Select a GPU

To determine how many GPU devices are available in your computer, use the gpuDeviceCount
function.

gpuDeviceCount

    2

When there are multiple devices, the first is the default. You can examine its properties with the
gpuDevice function to determine if that is the one you want to use.

d = gpuDevice

d =

  CUDADevice with properties:

                      Name: 'GeForce GTX 1080'
                     Index: 1
         ComputeCapability: '6.1'
            SupportsDouble: 1
             DriverVersion: 10
            ToolkitVersion: 10
        MaxThreadsPerBlock: 1024
          MaxShmemPerBlock: 49152
        MaxThreadBlockSize: [1024 1024 64]
               MaxGridSize: [2.1475e+09 65535 65535]
                 SIMDWidth: 32
               TotalMemory: 8.5899e+09
           AvailableMemory: 7.0053e+09
       MultiprocessorCount: 20
              ClockRateKHz: 1733500
               ComputeMode: 'Default'
      GPUOverlapsTransfers: 1
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    KernelExecutionTimeout: 1
          CanMapHostMemory: 1
           DeviceSupported: 1
            DeviceSelected: 1

If d is the device you want to use, you can proceed. To run computations on the GPU, use gpuArray
enabled functions. For more information, see “Run MATLAB Functions on a GPU” on page 8-9.

To use another device, call gpuDevice with the index of the other device.

gpuDevice(2)

Query Compute Capabilities

Create an object representing the default GPU device.

g = gpuDevice;

Query the compute capabilities of all available GPU devices.

for ii = 1:gpuDeviceCount
    g = gpuDevice(ii);
    fprintf(1,'Device %i has ComputeCapability %s \n', ...
            g.Index,g.ComputeCapability)
end

Device 1 has ComputeCapability 3.5
Device 2 has ComputeCapability 2.0

Use Multiple GPUs in a Parallel Pool

If you have access to several GPUs, you can perform your calculations on multiple GPUs in parallel
using a parallel pool.

Start a parallel pool with as many workers as GPUs. To determine the number of GPUs available, use
the gpuDeviceCount function. By default, MATLAB assigns a different GPU to each worker for best
performance.

parpool('local',gpuDeviceCount);

To identify which GPU each worker is using, call gpuDevice inside an spmd block. The spmd block
runs gpuDevice on every worker.

spmd
    gpuDevice
end

Use parallel language features, such as parfor or parfeval, to distribute your computations to
workers in the parallel pool. If you use gpuArray enabled functions in your computations, these
functions run on the GPU of the worker. For more information, see “Run MATLAB Functions on a
GPU” on page 8-9. For an example, see “Run MATLAB Functions on Multiple GPUs”.

When you are done with your computations, shut down the parallel pool. You can use the gcp
function to obtain the current parallel pool.
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delete(gcp('nocreate'));

If you want to use a different choice of GPUs, then can use gpuDevice to select a particular GPU on
each worker. Define an array, for example gpuIndices, that contains the indices of the GPUs to
activate on each worker. Then, start a parallel pool with as many workers as GPUs to select, and use
an spmd block to run gpuDevice on each worker. The labindex function identifies each worker. Use
this function to associate a worker with a GPU index.

gpuIndices = [1 3];
parpool(numel(gpuIndices));
spmd
    gpuDevice(gpuIndices(labindex));
end

As a best practice, and for best performance, assign a different GPU to each worker.

See Also
GPUDeviceManager | arrayfun | gpuArray | gpuDeviceCount | reset | wait (GPUDevice)

Topics
“Identify and Select a GPU Device” on page 8-19
“Run MATLAB Functions on a GPU” on page 8-9
“Run MATLAB Functions on Multiple GPUs”
“GPU Support by Release” on page 8-38

External Websites
Deep Learning with GPUs and MATLAB

Introduced in R2010b
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GPUDeviceManager
Manager for GPU Devices

Constructor
parallel.gpu.GPUDeviceManager.instance

Description
parallel.gpu.GPUDeviceManager provides events that indicate when a GPU device has been
selected or deselected. These events also fire when a GPU device is reset. There is only a single
instance of the parallel.gpu.GPUDeviceManager available in a given MATLAB session, and it is
obtained using the method parallel.gpu.GPUDeviceManager.instance.

Events
Events of the class include the following:

Event Name Description
DeviceSelected Fired after a GPU device is selected.
DeviceDeselecting Fired just before a GPU device is deselected.

Properties
A GPUDeviceManager object has one property:

Property Name Description
SelectedDevice Contains the currently selected GPU Device.

Methods
Methods of the class include the following:

Method Name Description
getDeviceCount Returns the number of GPU devices available.
selectDevice Selects a GPU device.

See Also
gpuDevice, gpuDeviceCount, gpuArray

Introduced in R2016a
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mxGPUArray
Type for MATLAB gpuArray

Description
mxGPUArray is an opaque C language type that allows a MEX function access to the elements in a
MATLAB gpuArray. Using the mxGPU API, you can perform calculations on a MATLAB gpuArray, and
return gpuArray results to MATLAB.

All MEX functions receive inputs and pass outputs as mxArrays. A gpuArray in MATLAB is a special
kind of mxArray that represents an array stored on the GPU. In your MEX function, you use
mxGPUArray objects to access an array stored on the GPU: these objects correspond to MATLAB
gpuArrays.

The mxGPU API contains functions that manipulate mxGPUArray objects. These functions allow you
to extract mxGPUArrays from input mxArrays, to wrap output mxGPUArrays as mxArrays for return
to MATLAB, to determine the characteristics of the arrays, and to get pointers to the underlying
elements. You can perform calculations by passing the pointers to CUDA functions that you write or
that are available in external libraries.

The basic structure of a GPU MEX function is:

1 Call mxInitGPU to initialize MathWorks GPU library.
2 Determine which mxArray inputs contain GPU data.
3 Create mxGPUArray objects from the input mxArray arguments, and get pointers to the input

elements on the device.
4 Create mxGPUArray objects to hold the outputs, and get the pointers to the output elements on

the device.
5 Call a CUDA function, passing it the device pointers.
6 Wrap the output mxGPUArray as an mxArray for return to MATLAB.
7 Destroy the mxGPUArray objects you created.

The header file that contains this type is mxGPUArray.h. You include it with the line:

#include "gpu/mxGPUArray.h"

See Also
gpuArray, mxArray

Introduced in R2013a
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parallel.Cluster
Access cluster properties and behaviors

Constructors
parcluster

getCurrentCluster (in the workspace of the MATLAB worker)

Container Hierarchy
Parent None
Children parallel.Job, parallel.Pool

Description
A parallel.Cluster object provides access to a cluster, which controls the job queue, and distributes
tasks to workers for execution.

Types
The two categories of clusters are the MATLAB Job Scheduler and common job scheduler (CJS). The
MATLAB Job Scheduler is available in the MATLAB Parallel Server. The CJS clusters encompass all
other types, including the local, generic, and third-party schedulers.

Use MJSComputeCloud objects to interact with MATLAB Parallel Server for Amazon EC2® clusters.

The following table describes the available types of cluster objects.

Cluster Type Description
parallel.cluster.MJS Interact with MATLAB Job Scheduler cluster on-

premises
parallel.cluster.MJSComputeCloud Interact with MATLAB Parallel Server for Amazon

EC2 cluster
parallel.cluster.Local Interact with CJS cluster running locally on client

machine
parallel.cluster.HPCServer Interact with CJS cluster running Windows

Microsoft HPC Server
parallel.cluster.LSF Interact with CJS cluster running Platform LSF
parallel.cluster.PBSPro Interact with CJS cluster running Altair PBS Pro
parallel.cluster.Torque Interact with CJS cluster running TORQUE
parallel.cluster.Slurm Interact with CJS cluster running Slurm
parallel.cluster.Generic Interact with CJS cluster using the generic

interface
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Methods
Common to All Cluster Types

batch Run MATLAB script or function on worker
createCommunicatingJob Create communicating job on cluster
createJob Create independent job on cluster
findJob Find job objects stored in cluster
isequal True if clusters have same property values
parpool Create parallel pool on cluster
saveAsProfile Save cluster properties to specified profile
saveProfile Save modified cluster properties to its current profile

MATLAB Job Scheduler

changePassword Prompt user to change MATLAB Job Scheduler password
demote Demote job in cluster queue
logout Log out of MATLAB Job Scheduler cluster
pause Pause MATLAB Job Scheduler queue
promote Promote job in MATLAB Job Scheduler cluster queue
resume Resume processing queue in MATLAB Job Scheduler

MJSComputeCloud

shutdown Shut down cloud cluster
start Start cloud cluster
wait (cluster) Wait for cloud cluster to change state

HPC Server, PBS Pro, LSF, TORQUE, Slurm, and Local Clusters

getDebugLog Read output messages from job run in CJS cluster

Generic

getDebugLog Read output messages from job run in CJS cluster
getJobClusterData Get specific user data for job on generic cluster
getJobFolder Folder on client where jobs are stored
getJobFolderOnCluster Folder on cluster where jobs are stored
getLogLocation Log location for job or task
setJobClusterData Set specific user data for job on generic cluster

Properties
Common to All Cluster Types

The following properties are common to all cluster object types.
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Property Description
ClusterMatlabRoot Specifies path to MATLAB for workers to use
Host Host name of the cluster head node
JobStorageLocation Location where cluster stores job and task

information
Jobs List of jobs contained in this cluster
LicenseNumber License number to use when running jobs with

this cluster
Modified True if any properties in this cluster have been

modified
NumThreads Number of computational threads for workers
NumWorkers Number of workers available for this cluster
OperatingSystem Operating system of nodes used by cluster
Profile Profile used to build this cluster
RequiresOnlineLicensing True if the cluster is using online licensing
Type Type of this cluster
UserData Information associated with cluster object within

client session

MATLAB Job Scheduler

MATLAB Job Scheduler cluster objects have the following properties in addition to the common
properties:

Property Description
AllHostAddresses IP addresses of the cluster host
BusyWorkers Workers currently running tasks
IdleWorkers Workers currently available for running tasks
HasSecureCommunication True if cluster is using secure communication
Name Name of this cluster
NumBusyWorkers Number of workers currently running tasks
NumIdleWorkers Number of workers available for running tasks
PromptForPassword True if system should prompt for password when

authenticating user
SecurityLevel Degree of security applied to cluster and its jobs.

For descriptions of security levels, see “Set
MATLAB Job Scheduler Cluster Security”
(MATLAB Parallel Server).

State Current state of cluster
Username User accessing cluster
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MJSComputeCloud

MJSComputeCloud cluster objects have the following properties in addition to the common
properties:

Property Description
BusyWorkers Workers currently running tasks
Certificate Cluster SSL certificate
HasSecureCommunication True if cluster is using secure communication
Identifier Unique cluster identifier
IdleWorkers Workers currently available for running tasks
MatlabVersion Version of MATLAB running on the workers
MaxNumWorkers Maximum number of workers this cluster can

use.

• When you use a cluster with automatic
resizing, workers are added automatically up
to this maximum value as necessary. For more
information on automatic resizing, see Resize
Clusters Automatically.

• When you use a cluster without automatic
resizing, this value is the number of workers
when you started the cluster.

Name Name of this cluster
NumBusyWorkers Number of workers currently running tasks
NumIdleWorkers Number of workers available for running tasks
NumWorkersRequested Number of workers requested for this cluster.

The cluster adds or removes workers as soon as
possible to reach this number.

SharedState The shared state of the cluster, which can be:

• Personal – Only you can use this cluster, so
long as you created it.

• Shareable – Anyone can use this cluster.
ShutdownAt Shutdown time or event
State Current state of cluster
Username User accessing cluster

Local

Local cluster objects have no editable properties beyond the properties common to all clusters.

HPC Server

HPC Server cluster objects have the following properties in addition to the common properties:
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Property Description
ClusterVersion Version of Microsoft Windows HPC Server

running on the cluster
HasSharedFilesystem Specify whether client and cluster nodes share

JobStorageLocation
JobDescriptionFile Name of XML job description file to use when

creating jobs
JobTemplate Name of job template to use for jobs submitted to

HPC Server
Name Name of this cluster
UseSOAJobSubmission Allow service-oriented architecture (SOA)

submission on HPC Server

PBS Pro and TORQUE

PBS Pro and TORQUE cluster objects have the following properties in addition to the common
properties:

Property Description
CommunicatingJobWrapper Script that cluster runs to start workers
RcpCommand Command to copy files to and from client
ResourceTemplate Specify qsub options to request resources during

job submission
RshCommand Remote execution command used on worker

nodes during communicating job
HasSharedFilesystem Specify whether client and cluster nodes share

JobStorageLocation
SubmitArguments Specify additional arguments to use when

submitting jobs

LSF

LSF cluster objects have the following properties in addition to the common properties:

Property Description
ClusterName Name of Platform LSF cluster
CommunicatingJobWrapper Script that the cluster runs to start workers
HasSharedFilesystem Specify whether client and cluster nodes share

JobStorageLocation
ResourceTemplate Specify bsub options to request resources during

job submission
SubmitArguments Specify additional arguments to use when

submitting jobs

Slurm

Slurm cluster objects have the following properties in addition to the common properties:
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Property Description
ClusterName Name of the Slurm cluster
CommunicatingJobWrapper Script that the cluster runs to start workers
ResourceTemplate Specify sbatch options to request resources

during job submission
SubmitArguments Specify additional arguments to use when

submitting jobs

Generic

If you create a generic cluster object from an R2017a or later profile, you have the following
properties in addition to the common properties:

Property Description
AdditionalProperties Additional properties for plugin scripts
HasSharedFilesystem Specify whether client and cluster nodes share

JobStorageLocation
PluginScriptsLocation Folder containing scheduler plugin scripts

If you create a generic cluster object from an R2016b or earlier profile, you have the following
properties in addition to the common properties:

Property Description
CancelJobFcn Function to run when cancelling job
CancelTaskFcn Function to run when cancelling task
CommunicatingSubmitFcn Function to run when submitting communicating

job
DeleteJobFcn Function to run when deleting job
DeleteTaskFcn Function to run when deleting task
GetJobStateFcn Function to run when querying job state
HasSharedFilesystem Specify whether client and cluster nodes share

JobStorageLocation
IndependentSubmitFcn Function to run when submitting independent job

Help
For further help on cluster objects, including links to help for specific cluster types and object
properties, type:

help parallel.Cluster

See Also
parallel.Job, parallel.Task, parallel.Worker, parallel.Pool,
parallel.cluster.Hadoop
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parallel.cluster.Hadoop
Hadoop cluster for mapreducer, mapreduce and tall arrays

Constructors
parallel.cluster.Hadoop

Description
A parallel.cluster.Hadoop object provides access to a cluster for configuring mapreducer, mapreduce,
and tall arrays.

Properties
A parallel.cluster.Hadoop object has the following properties.

Property Description
AdditionalPaths Paths to be added to MATLAB command search

path on workers
AttachedFiles Files transferred to the workers during a

mapreduce call
AutoAttachFiles Specifies whether automatically attach files
ClusterMatlabRoot Specifies path to MATLAB for workers to use
HadoopConfigurationFile Application configuration file to be given to

Hadoop
HadoopInstallFolder Installation location of Hadoop on the local

machine
HadoopProperties Map of name-value property pairs to be given to

Hadoop
LicenseNumber License number to use with online licensing
RequiresOnlineLicensing Specify whether cluster uses online licensing
SparkInstallFolder Installation location of Spark on the local

machine
SparkProperties Map of name-value property pairs to be given to

Spark

HadoopProperties allows you to override configuration properties for Hadoop. See the list of
properties in the Hadoop documentation.

The SparkInstallFolder is by default set to the SPARK_HOME environment variable. This is
required for tall array evaluation on Hadoop (but not for mapreduce). For a correctly configured
cluster, you only need to set the installation folder.

SparkProperties allows you to override configuration properties for Spark. See the list of
properties in the Spark documentation.
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Help
For further help, type:

help parallel.cluster.Hadoop

Specify Memory Properties
Spark enabled Hadoop clusters place limits on how much memory is available. You must adjust these
limits to support your workflow.

Size of Data to Gather

The amount of data gathered to the client is limited by the Spark properties:

• spark.driver.memory
• spark.executor.memory

The amount of data to gather from a single Spark task must fit in these properties. A single Spark
task processes one block of data from HDFS, which is 128 MB of data by default. If you gather a tall
array containing most of the original data, you must ensure these properties are set to fit.

If these properties are set too small, you see an error like the following.

Error using tall/gather (line 50)
Out of memory; unable to gather a partition of size 300m from Spark.
Adjust the values of the Spark properties spark.driver.memory and 
spark.executor.memory to fit this partition.

The error message also specifies the property settings you need.

Adjust the properties either in the default settings of the cluster or directly in MATLAB. To adjust the
properties in MATLAB, add name-value pairs to the SparkProperties property of the cluster. For
example:

cluster = parallel.cluster.Hadoop;
cluster.SparkProperties('spark.driver.memory') = '2048m';
cluster.SparkProperties('spark.executor.memory') = '2048m';
mapreducer(cluster);

Specify Working Memory Size for a MATLAB Worker

The amount of working memory for a MATLAB Worker is limited by the Spark property:

• spark.yarn.executor.memoryOverhead

By default, this is set to 2.5 GB. You typically need to increase this if you use arrayfun, cellfun, or
custom datastores to generate large amounts of data in one go. It is advisable to increase this if you
come across lost or crashed Spark Executor processes.

You can adjust these properties either in the default settings of the cluster or directly in MATLAB. To
adjust the properties in MATLAB, add name-value pairs to the SparkProperties property of the
cluster. For example:
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cluster = parallel.cluster.Hadoop; 
cluster.SparkProperties('spark.yarn.executor.memoryOverhead') = '4096m';
mapreducer(cluster);

See Also
parallel.Cluster, parallel.Pool

See Also
Topics
“Use Tall Arrays on a Spark Enabled Hadoop Cluster” on page 5-51
“Run mapreduce on a Hadoop Cluster” on page 5-57

Introduced in R2014b
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parallel.gpu.RandStream
Random number stream on a GPU

Description
Use parallel.gpu.RandStream to control the global GPU random number stream and create
multiple independent streams on the GPU. When you generate random numbers on a GPU, the
numbers are drawn from the GPU random number stream. This stream is different from the random
stream of the client MATLAB session on the CPU.

To create random numbers on the GPU, use the random number generator functions rand, randi,
and randn with gpuArrays. By default, these functions draw numbers from the global GPU random
number stream. To use a different stream, follow the syntaxes described in the RandStream object
functions rand (RandStream), randi (RandStream), and randn (RandStream). If you use a
GPU random number stream, the results are returned as a gpuArray.

Creation
Use the following syntaxes to create a single parallel.gpu.RandStream object. If you want to
create multiple independent streams simultaneously, use the parallel.gpu.RandStream.create
function.

Syntax
s = parallel.gpu.RandStream('gentype')
s = parallel.gpu.RandStream('gentype',Name,Value)

Description

s = parallel.gpu.RandStream('gentype') creates a random number stream that uses the
uniform pseudorandom number generator algorithm specified by 'gentype'.

s = parallel.gpu.RandStream('gentype',Name,Value) also specifies one or more optional
Name,Value pairs to control properties of the stream.

Input Arguments

'gentype' — Random number generator algorithm
character vector | string

Random number generator algorithm, specified as a character vector or string for any valid random
number generator. Three random number generator algorithms are supported on the GPU.

Keyword Generator Multiple Stream and
Substream Support

Approximate Period in
Full Precision

'Threefry' or
'Threefry4x64_20'

Threefry 4x64 generator
with 20 rounds

Yes 2514 (2256 streams of length
2258)
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Keyword Generator Multiple Stream and
Substream Support

Approximate Period in
Full Precision

'Philox' or
'Philox4x32_10'

Philox 4x32 generator with
10 rounds

Yes 2193 (264 streams of length
2129)

'CombRecursive' or
'mrg32k3a'

Combined multiple
recursive generator

Yes 2191 (263 streams of length
2127)

For more information on the differences between generating random numbers on the GPU and CPU,
see “Random Number Streams on a GPU” on page 8-6.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Seed — Random number seed
0 (default) | nonnegative integer | 'shuffle'

Random number seed, specified as the comma-separated pair consisting of 'Seed' and a
nonnegative integer or as the string or character vector 'shuffle'. The seed specifies the starting
point for the algorithm to generate random numbers. Specify 'Seed' as an integer when you want
reproducible results. Specifying 'Seed' as 'shuffle' seeds the generator based on the current
time.

NormalTransform — Normal transformation algorithm
'BoxMuller' | 'Inversion'

Transformation algorithm for normally distributed random numbers generated using the randn
(RandStream), specified as the comma-separated pair 'NormalTransform' and the algorithm
names 'BoxMuller' or 'Inversion'. The 'BoxMuller' algorithm is supported for the
'Threefry and 'Philox' generators. The 'Inversion' algorithm is supported for the
'CombRecursive' generator. No other transformation algorithms are supported on the GPU.

Properties
Type — Random number generator algorithm
'Threefry4x64_20' | 'Philox4x32_10' | 'MRG32K3A'

This property is read-only.

Generator algorithm used by the stream.
Data Types: char

Seed — Random number seed
nonnegative integer

This property is read-only.

Seed value used to create the stream

NumStreams — Number of Streams
nonnegative integer
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This property is read-only.

Number of streams in the group in which the current stream was created.

StreamIndex — Stream Index
nonnegative integer

Index of the current stream from among the group of streams with which it was created.

State — Current state
vector

Current state of the random number stream. The internal state determines the sequence of random
numbers produced by the random number stream s. The size of this state vector depends on the
generator chosen.

Saving and restoring the internal state of the generator with the State property allows you to
reproduce a sequence of random numbers. When you set this property, the value, you assign to
s.State must be a value read from s.State previously. Use reset to return a stream to a
predictable state without having previously read from the State property.

NormalTransform — Normal transformation algorithm
'BoxMuller | 'Inversion'

Transformation algorithm used to generate normally distributed pseudorandom values using randn.
Data Types: char

Antithetic — Antithetic values
false or 0 (default)

This property is read-only.

Logical value indicating whether S generates antithetic pseudorandom values, that is, the usual
values subtracted from 1 for uniform values. You cannot set this property.
Data Types: logical

FullPrecision — Full precision generation
true or 1 (default)

This property is read-only.

Logical value indicating whether the random number stream generates values using its full precision.
Two random numbers are consumed to ensure all bits of a double are set. You cannot modify this
property.
Data Types: logical

Object Functions
parallel.gpu.RandStream.create Create independent random number streams on a GPU
parallel.gpu.RandStream.list Random number generator algorithms on the GPU
parallel.gpu.RandStream.getGlobalStream Current global GPU random number stream
parallel.gpu.RandStream.setGlobalStream Set GPU global random number stream
reset (RandStream) Reset random number stream
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rand (RandStream) Uniformly distributed random numbers
randi (RandStream) Uniformly distributed pseudorandom integers
randn (RandStream) Normally distributed pseudorandom numbers
randperm (RandStream) Random permutation

Examples

Change the Global GPU Stream

You can change the global random number stream on the GPU. First, define the random number
stream that you want to set as the new global stream.

newStr = parallel.gpu.RandStream('Philox')

newStr =

Philox4x32_10 random stream on the GPU
             Seed: 0
  NormalTransform: BoxMuller

Next, set this new stream to be the global stream.

parallel.gpu.RandStream.setGlobalStream(newStr);

Check that newStr is now the current global stream.

newStr

newStr =

Philox4x32_10 random stream on the GPU (current global stream)
             Seed: 0
  NormalTransform: BoxMuller

On a GPU, the functions rand, randi, and randn now draw random numbers from the new global
stream using the 'Philox' generator algorithm.

Match the GPU and CPU Random Number Streams

If you have applications that require generating the same random numbers on the GPU and the CPU,
you can set the streams to match. Create matching streams on both the GPU and CPU, and set them
as the global stream in each case.

stCPU = RandStream('Threefry','Seed',0,'NormalTransform','Inversion');
stGPU = parallel.gpu.RandStream('Threefry','Seed',0,'NormalTransform','Inversion');

Only the 'Inversion' normal transformation algorithm is available on both the GPU and CPU.

Set these streams to be the global streams on the CPU and GPU, respectively.

RandStream.setGlobalStream(stCPU);
parallel.gpu.RandStream.setGlobalStream(stGPU);
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Calling rand and randn now produces the same sets of numbers on both the GPU and the client
MATLAB session.

rC = rand(1,10)
rG = rand(1,10, 'gpuArray')

rC =
    0.1726    0.9207    0.8108    0.7169    0.8697    0.7920    0.4159    0.6503    0.1025    0.6166

rG =
    0.1726    0.9207    0.8108    0.7169    0.8697    0.7920    0.4159    0.6503    0.1025    0.6166

rnC = randn(1,10)
rnG = randn(1,10, 'gpuArray')

rnC =
    -0.9438    1.4095    0.8807    0.5736    1.1250    0.8133   -0.2124    0.3862   -1.2673    0.2966

rnG =
    -0.9438    1.4095    0.8807    0.5736    1.1250    0.8133   -0.2124    0.3862   -1.2673    0.2966

See Also
RandStream | gpurng

Topics
“Random Number Streams on a GPU” on page 8-6

Introduced in R2011b
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parallel.Job
Access job properties and behaviors

Constructors
createCommunicatingJob, createJob, findJob, recreate

getCurrentJob (in the workspace of the MATLAB worker)

Container Hierarchy
Parent parallel.Cluster
Children parallel.Task

Description
A parallel.Job object provides access to a job, which you create, define, and submit for execution.

Types
The following table describes the available types of job objects. The job type is determined by the
type of cluster, and whether the tasks must communicate with each other during execution.

Job Type Description
parallel.job.MJSIndependentJob Job of independent tasks on MATLAB Job

Scheduler cluster
parallel.job.MJSCommunicatingJob Job of communicating tasks on MATLAB Job

Scheduler cluster
parallel.job.CJSIndependentJob Job of independent tasks on CJS cluster
parallel.job.CJSCommunicatingJob Job of communicating tasks on CJS cluster

Methods
Common to All Job Types

The following methods are common to all job object types.
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cancel Cancel job or task
createTask Create new task in job
delete Remove job or task object from cluster and memory
diary Display or save Command Window text of batch job
fetchOutputs Retrieve output arguments from all tasks in job
findTask Task objects belonging to job object
listAutoAttachedFiles List of files automatically attached to job, task, or parallel pool
load Load workspace variables from batch job
recreate Create new job from existing job
submit Queue job in scheduler
wait Wait for job to change state

CJS Jobs

CJS job objects have the following methods in addition to the common methods:
getTaskSchedulerIDs Scheduler IDs of tasks in job

Properties
Common to All Job Types

The following properties are common to all job object types.

Property Description
AdditionalPaths Folders to add to MATLAB search path of workers
AttachedFiles Files and folders that are sent to workers
AutoAddClientPath Specifies whether user-added-entries on the

client’s path are automatically added to each
worker’s path

AutoAttachFiles Specifies if dependent code files are
automatically sent to workers

CreateDateTime Date and time when the job is created
EnvironmentVariables Names of environment variables that are sent to

the workers
FinishDateTime Date and time when the job finishes running
ID Job’s numeric identifier
JobData Information made available to all workers for

job’s tasks
Name Name of job
Parent Cluster object containing this job
StartDateTime Date and time when the job starts running
State State of job: 'pending', 'queued', 'running',

'finished', or 'failed'
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Property Description
SubmitDateTime Date and time when the job is submitted to the

queue
Tag Label associated with job
Tasks Array of task objects contained in job
Type Job type: 'independent', 'pool', or 'spmd'
UserData Information associated with job object
Username Name of user who owns job

MATLAB Job Scheduler Jobs

MATLAB Job Scheduler independent job objects and MATLAB Job Scheduler communicating job
objects have the following properties in addition to the common properties:

Property Description
AuthorizedUsers Users authorized to access job
FinishedFcn Callback function executed on client when this

job finishes
NumWorkersRange Minimum and maximum limits for number of

workers to run job
QueuedFcn Callback function executed on client when this

job is submitted to queue
RestartWorker True if workers are restarted before evaluating

first task for this job
RunningFcn Callback function executed on client when this

job starts running
Timeout Time limit, in seconds, to complete job

CJS Jobs

CJS independent job objects do not have any properties beyond the properties common to all job
types.

CJS communicating job objects have the following properties in addition to the common properties:

Property Description
NumWorkersRange Minimum and maximum limits for number of

workers to run job

Help
To get further help on a particular type of parallel.Job object, including a list of links to help for its
properties, type help parallel.job.<job-type>. For example:

help parallel.job.MJSIndependentJob
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See Also
parallel.Cluster, parallel.Task, parallel.Worker

Introduced in R2012a
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parallel.Pool
Parallel pool of workers

Description
Use parpool to create a parallel pool. After you create the pool, parallel pool features, such as
parfor or parfeval, run on the workers. With the parallel.Pool object, you can interact with
the parallel pool.

parallel.Pool is the base class for the following types of pools:

• ProcessPool
• ThreadPool
• ClusterPool

Creation
Create a parallel pool of workers by using the parpool function.

See Also
Future | parallel.Cluster

Topics
“Run Code on Parallel Pools” on page 2-56

Introduced in R2013b
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parallel.pool.DataQueue
Class that enables sending and listening for data between client and workers

Description
A data queue enables sending data or messages from workers back to the client in a parallel pool
while a computation is carried out. For example, you can get intermediate values and an indication of
the progress of the computation.

To send data from a parallel pool worker back to the client, first construct a DataQueue in the client.
Pass this DataQueue into a parfor-loop or other parallel language construct, such as spmd. From
the workers, call send to send data back to the client. At the client, register a function to be called
each time data is received by using afterEach.

• You can call send from the process that calls the constructor, if required.
• You can construct the queue on the workers and send it back to the client to enable

communication in the reverse direction. However, you cannot send a queue from one worker to
another. Use spmd, labSend, or labReceive instead.

• Unlike all other handle objects, DataQueue instances do remain connected when they are sent to
workers.

Creation

Syntax
q = parallel.pool.DataQueue

Description

q = parallel.pool.DataQueue takes no arguments and returns an object that can be used to
send or listen for messages (or data) from different workers. You call the constructor only in the
process where you want to receive the data. In the usual workflow, the workers should not be calling
the constructor, but should be handed an existing DataQueue instance instead.

Properties
QueueLength — Number of items currently held on the queue
zero or positive integer

Dependent property on the queue that indicates how many items of data are waiting to be removed
from the queue.

q = parallel.pool.DataQueue;
% No messages in queue because nothing has been sent.
q.QueueLength
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ans =

     0

q.send('sending a message')
% Now QueueLength = 1 because one message has been sent.
q.QueueLength

ans =

     1

% Add a callback to process the queue.
listener = q.afterEach(@disp);

sending a message

% Now QueueLength = 0 because there are no more pending messages.
q.QueueLength

ans =

     0

% Data sent now is immediately processed by the callback so that QueueLength remains 0.
q.send('sending message 2')
q.QueueLength

sending message 2

ans =

     0

% Deleting all callback listeners causes messages to build up in the queue again.
delete(listener)
q.send('sending message 3')
q.QueueLength

ans =

     1

Methods
A parallel.pool.DataQueue object has the following methods.

afterEach Define a function to call when new data is received on a DataQueue
send Send data from worker to client using a data queue

Examples

Send a Message in a parfor-Loop, and Dispatch the Message on the Queue

Construct a DataQueue, and call afterEach.
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q = parallel.pool.DataQueue;
afterEach(q, @disp);

Start a parfor-loop, and send a message. The pending message is passed to the afterEach
function, in this example @disp.

parfor i = 1:3
    send(q, i); 
end;

     1

     2

     3

For more details on listening for data using a DataQueue, see afterEach.

Construct a Simple parfor Wait Bar Using a Data Queue

Create a DataQueue, and use afterEach to specify the function to execute each time the queue
receives data. This example calls a subfunction that updates the wait bar.

Create a parfor-loop to carry out a computationally demanding task in MATLAB. Use send to send
some dummy data on each iteration of the parfor-loop. When the queue receives the data,
afterEach calls nUpdateWaitbar in the client MATLAB, and you can observe the wait bar
progress.

function a = parforWaitbar

D = parallel.pool.DataQueue;
h = waitbar(0, 'Please wait ...');
afterEach(D, @nUpdateWaitbar);

N = 200;
p = 1;

parfor i = 1:N
    a(i) = max(abs(eig(rand(400))));
    send(D, i);
end

    function nUpdateWaitbar(~)
        waitbar(p/N, h);
        p = p + 1;
    end
end
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Call afterEach to Dispatch Data on a Queue

If you call afterEach and there are items on the queue waiting to be dispatched, these items are
immediately dispatched to the function handle specified by afterEach. Call afterEach before
sending data to the queue, to ensure that on send, the function handle @disp is called.

Construct a DataQueue and call afterEach.

q = parallel.pool.DataQueue;
afterEach(q, @disp);

If you then send messages to the queue, each message is passed to the function handle specified by
afterEach immediately.

parfor i = 1:3
    send(q, i); 
end
send(q, 0);

     1

     3

     2

     0

If you send the data to the queue and then call afterEach, each of the pending messages are passed
to the function handle specified by afterEach.

q = parallel.pool.DataQueue;
parfor i = 1:3
    send(q, i); 
end
afterEach(q, @disp);

       3

       1

       2

See Also
afterEach | gcp | labReceive | labSend | parallel.pool.PollableDataQueue | parfor |
poll | send | spmd
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Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)
“Plot During Parameter Sweep with parfor”

Introduced in R2017a
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parallel.pool.PollableDataQueue
Class that enables sending and polling for data between client and workers

Description
PollableDataQueue enables sending and polling for data or messages between workers and client
in a parallel pool while a computation is being carried out. You can get intermediate values and
progress of the computation.

To send data from a parallel pool worker back to the client, first construct a PollableDataQueue in
the client. Pass this PollableDataQueue into a parfor-loop or other parallel language construct,
such as parfeval. From the workers, call send to send data back to the client. At the client, use
poll to retrieve the result of a message or data sent from a worker.

• You can call send from the process that calls the constructor, if required.
• You can construct the queue on the workers and send it back to the client to enable

communication in the reverse direction. However, you cannot send a queue from one worker to
another. Use spmd, labSend, or labReceive instead.

• Unlike all other handle objects, PollableDataQueue instances do remain connected when they
are sent to workers.

Construction
p = parallel.pool.PollableDataQueue

The constructor for a PollableDataQueue takes no arguments and returns an object that can be
used to send and poll for messages (or data) from different workers. You call the constructor only in
the process where you want to receive the data. In the usual workflow, the workers should not be
calling the constructor, but should be handed an existing PollableDataQueue instance instead.

Properties
QueueLength — Number of items currently held on the queue
zero or positive integer

Read-only property that indicates how many items of data are waiting to be removed from the queue.
Example:

pollableQ = parallel.pool.PollableDataQueue;
% No messages in queue because nothing has been sent yet.
pollableQ.QueueLength

ans =

     0

pollableQ.send('A message')
% Now QueueLength = 1 because one message is sent and not yet polled.
pollableQ.QueueLength
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ans =

     1

msg = pollableQ.poll();
disp(msg)

A message

pollableQ.QueueLength
% Now QueueLength = 0 because there are no more pending messages.

ans =

     0

Methods
A parallel.pool.PollableDataQueue object has the following methods.

poll Retrieve data sent from a worker
send Send data from worker to client using a data queue

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects (MATLAB).

Examples

Send a Message in a parfor-loop, and Poll for the Result

Construct a PollableDataQueue.

p = parallel.pool.PollableDataQueue;

Start a parfor-loop, and send a message, such as data with the value 1.

parfor i = 1
    send(p, i); 
end

Poll for the result.

poll(p)

1

For more details on polling for data using a PollableDataQueue, see poll.

See Also
gcp | labReceive | labSend | parallel.pool.DataQueue | parfeval | parfevalOnAll |
parfor | poll | send
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Topics
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2017a
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parallel.Task
Access task properties and behaviors

Constructors
createTask, findTask

getCurrentTask (in the workspace of the MATLAB worker)

Container Hierarchy
Parent parallel.Job
Children none

Description
A parallel.Task object provides access to a task, which executes on a worker as part of a job.

Types
The following table describes the available types of task objects, determined by the type of cluster.

Task Type Description
parallel.task.MJSTask Task on MATLAB Job Scheduler cluster
parallel.task.CJSTask Task on CJS cluster

Methods
All task type objects have the same methods, described in the following table.

cancel Cancel job or task
delete Remove job or task object from cluster and memory
listAutoAttachedFiles List of files automatically attached to job, task, or parallel pool
wait Wait for job to change state

Properties
Common to All Task Types

The following properties are common to all task object types.

Property Description
CaptureDiary Specify whether to return diary output

9 Objects

9-64



Property Description
CreateDateTime Date and time when the task is created
Diary Text produced by execution of task object’s

function
Error Task error information
ErrorIdentifier Task error identifier
ErrorMessage Message from task error
FinishDateTime Date and time when the task is finished
Function Function called when evaluating task
ID Task’s numeric identifier
InputArguments Input arguments to task function
Name Name of this task
NumOutputArguments Number of arguments returned by task function
OutputArguments Output arguments from running task function on

worker
Parent Job object containing this task
StartDateTime Date and time when the task is started
State Current state of task
UserData Information associated with this task object
Warnings Warning information issued during execution of

the task, captured in a struct array with the fields
message, identifier, and stack

Worker Object representing worker that ran this task

MATLAB Job Scheduler Tasks

MATLAB Job Scheduler task objects have the following properties in addition to the common
properties:

Property Description
FailureInfo Information returned from failed task
FinishedFcn Callback executed in client when task finishes
MaximumRetries Maximum number of times to rerun failed task
NumFailures Number of times tasked failed
RunningFcn Callback executed in client when task starts

running
Timeout Time limit, in seconds, to complete task

CJS Tasks

CJS task objects have the following properties in addition to the common properties:
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Property Description
SchedulerID If you have submitted the task to a third-party

scheduler, this is the ID that the scheduler gives to
the task on submission. For example, this
corresponds to the JOBID on a SLURM scheduler.

Help
To get further help on either type of parallel.Task object, including a list of links to help for its
properties, type:

help parallel.task.MJSTask
help parallel.task.CJSTask

See Also
parallel.Cluster, parallel.Job, parallel.Worker

Introduced in R2012a
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parallel.Worker
Access worker that ran task

Constructors
getCurrentWorker in the workspace of the MATLAB worker.

In the client workspace, a parallel.Worker object is available from the Worker property of a
parallel.Task object.

Container Hierarchy
Parent parallel.cluster.MJS
Children none

Description
A parallel.Worker object provides access to the MATLAB worker session that executed a task as part
of a job.

Types
Worker Type Description
parallel.cluster.MJSWorker MATLAB worker on MATLAB Job Scheduler

cluster
parallel.cluster.CJSWorker MATLAB worker on CJS cluster
parallel.ThreadWorker MATLAB thread worker.

Methods
There are no methods for a parallel.Worker object other than generic methods for any objects in the
workspace, such as delete, etc.

Properties
MATLAB Job Scheduler Worker

The following table describes the properties of an MATLAB Job Scheduler worker.

Property Description
AllHostAddresses IP addresses of worker host
Name Name of worker, set when worker session started
Parent MATLAB Job Scheduler cluster to which this

worker belongs
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CJS Worker

The following table describes the properties of an CJS worker.

Property Description
ComputerType Type of computer on which the worker ran; the

value of the MATLAB function computer
executed on the worker

Host Host name where the worker executed the task
ProcessId Process identifier for the worker

Thread Worker

The following table describes the properties of a thread worker.

Property Description
ComputerType Type of computer on which the worker ran; the

value of the MATLAB function computer
executed on the worker

Host Host name where the worker executed the task

Help
To get further help on the types of parallel.Worker objects, including a list of links to help for its
properties, type:

help parallel.cluster.MJSWorker
help parallel.cluster.CJSWorker
help parallel.ThreadWorker

See Also
parallel.Cluster, parallel.Job, parallel.Task

Introduced in R2012a
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ProcessPool
Parallel pool of process workers on the local machine

Description
Use parpool to create a parallel pool of process workers on you local machine. After you create the
pool, parallel pool features, such as parfor or parfeval, run on the workers. With the
ProcessPool object, you can interact with the parallel pool.

Creation
Create a parallel pool of process workers on the local machine by using the parpool function.

pool = parpool("local")

Properties
AttachedFiles — Files and folders copied to workers
cell array of character vectors

Files and folders copied to workers, specified as a cell array of character vectors. To attach files and
folders to the pool, use addAttachedFiles.

AutoAddClientPath — Indication whether user-added entries on client path are added to
worker paths
true (default) | false

This property is read-only.

Indication whether user-added entries on client path are added to worker paths, specified as a logical
value.
Data Types: logical

Cluster — Cluster on which the parallel pool is running
cluster object

This property is read-only.

Cluster on which the parallel pool is running, specified as a parallel.Cluster object.

Connected — Flag that indicates whether the parallel pool is running
true | false

This property is read-only.

Flag that indicates whether the parallel pool is running, specified as a logical value.
Data Types: logical
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EnvironmentVariables — Environment variables copied to the workers
cell array of character vectors

This property is read-only.

Environment variables copied to the workers, specified as a cell array of character vectors.

FevalQueue — Queue of FevalFutures to run on the parallel pool
FevalQueue

This property is read-only.

Queue of FevalFutures to run on the parallel pool, specified as an FevalQueue object. You can use
this property to check the pending and running future variables of the parallel pool. To create future
variables, use parfeval and parfevalOnAll. For more information on future variables, see
Future.
Data Types: FevalQueue

IdleTimeout — Time after which the pool shuts down if idle
nonnegative integer

Time in minutes after which the pool shuts down if idle, specified as an integer greater than zero. A
pool is idle if it is not running code on the workers. By default 'IdleTimeout' is the same as the
value in your parallel preferences. For more information on parallel preferences, see “Specify Your
Parallel Preferences” on page 5-9.

NumWorkers — Number of workers comprising the parallel pool
integer

This property is read-only.

Number of workers comprising the parallel pool, specified as an integer.

SpmdEnabled — Indication if pool can run spmd code
true (default) | false

This property is read-only.

Indication if pool can run spmd code, specified as a logical value.
Data Types: logical

Object Functions
addAttachedFiles Attach files or folders to parallel pool
delete Shut down parallel pool
listAutoAttachedFiles List of files automatically attached to job, task, or parallel pool
parfeval Execute function asynchronously on parallel pool worker
parfevalOnAll Execute function asynchronously on all workers in parallel pool
ticBytes Start counting bytes transferred within parallel pool
tocBytes Read how many bytes have been transferred since calling ticBytes
updateAttachedFiles Update attached files or folders on parallel pool

See Also
parpool
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Topics
“Run Code on Parallel Pools” on page 2-56
“Choose Between Thread-Based and Process-Based Environments” on page 2-61

Introduced in R2020a
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RemoteClusterAccess
Connect to schedulers when client utilities are not available locally

Constructor
parallel.cluster.RemoteClusterAccess

r = parallel.cluster.RemoteClusterAccess(username)

r = parallel.cluster.RemoteClusterAccess(username,P1,V1,...,Pn,Vn)

Description
parallel.cluster.RemoteClusterAccess allows you to establish a connection and run
commands on a remote host. This class is intended for use with the generic scheduler interface when
using remote submission of jobs or on nonshared file systems.

r = parallel.cluster.RemoteClusterAccess(username) uses the supplied username when
connecting to the remote host, and returns a RemoteClusterAccess object r. You will be prompted
for a password when establishing the connection.

r = parallel.cluster.RemoteClusterAccess(username,P1,V1,...,Pn,Vn) allows
additional parameter-value pairs that modify the behavior of the connection. The accepted
parameters are:

• 'IdentityFilename' — A character vector containing the full path to the identity file to use
when connecting to a remote host. If 'IdentityFilename' is not specified, you are prompted
for a password when establishing the connection.

• 'IdentityFileHasPassphrase' — A logical indicating whether or not the identity file requires
a passphrase. If true, you are prompted for a password when establishing a connection. If an
identity file is not supplied, this property is ignored. This value is false by default.

For more information and detailed examples, see “Submitting from a Remote Host” on page 6-26 and
“Submitting without a Shared File System” on page 6-27.

Methods
Method Name Description
connect connect(r,clusterHost) establishes a connection to the specified

host using the user credential options supplied in the constructor. File
mirroring is not supported.

connect(r,clusterHost,remoteDataLocation) establishes a
connection to the specified host using the user credential options
supplied in the constructor. remoteDataLocation identifies a folder
on the clusterHost that is used for file mirroring. The user
credentials supplied in the constructor must have write access to this
folder.
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Method Name Description
disconnect disconnect(r) disconnects the existing remote connection. The

connect method must have already been called.
doLastMirrorForJob doLastMirrorForJob(r,job) performs a final copy of changed files

from the remote DataLocation to the local DataLocation for the
supplied job. Any running mirrors for the job also stop and the job files
are removed from the remote DataLocation. The
startMirrorForJob or resumeMirrorForJob method must have
already been called.

getRemoteJobLocation getRemoteJobLocation(r,jobID,remoteOS) returns the full path
to the remote job location for the supplied jobID. Valid values for
remoteOS are 'pc' and 'unix'.

isJobUsingConnection isJobUsingConnection(r,jobID) returns true if the job is
currently being mirrored.

resumeMirrorForJob resumeMirrorForJob(r,job) resumes the mirroring of files from
the remote DataLocation to the local DataLocation for the
supplied job. This is similar to the startMirrorForJob method, but
does not first copy the files from the local DataLocation to the
remote DataLocation. The connect method must have already been
called. This is useful if the original client MATLAB session has ended,
and you are accessing the same files from a new client session.

runCommand [status,result] = runCommand(r,command) runs the supplied
command on the remote host and returns the resulting status and
standard output. The connect method must have already been called.

startMirrorForJob startMirrorForJob(r,job) copies all the job files from the local
DataLocation to the remote DataLocation, and starts mirroring
files so that any changes to the files in the remote DataLocation are
copied back to the local DataLocation. The connect method must
have already been called.

stopMirrorForJob stopMirrorForJob(r,job) immediately stops the mirroring of files
from the remote DataLocation to the local DataLocation for the
specified job. The startMirrorForJob or resumeMirrorForJob
method must have already been called. This cancels the running
mirror and removes the files for the job from the remote location. This
is similar to doLastMirrorForJob, except that stopMirrorForJob
makes no attempt to ensure that the local job files are up to date. For
normal mirror stoppage, use doLastMirrorForJob.

getConnectedAccess getConnectedAccess(host,username) returns a
RemoteClusterAccess object that is connected to the supplied host.
This function may return a previously constructed
RemoteClusterAccess object if one exists.

getConnectedAccess(...,P1,V1,...Pn,Vn) passes the
additional parameters to the RemoteClusterAccess constructor.
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Method Name Description
getConnectedAccessWithMirror getConnectedAccessWithMirror(host,location,username)

returns a RemoteClusterAccess object that is connected to the
supplied host, using the location as the mirror location. This function
may return a previously constructed RemoteClusterAccess object if
one exists.

getConnectedAccessWithMirror(...,P1,V1,...Pn,Vn) passes
the additional parameters to the RemoteClusterAccess constructor.

Properties
A RemoteClusterAccess object has the following read-only properties. Their values are set when
you construct the object or call its connect method.

Property Name Description
Hostname Name of the remote host to access.
IdentityFileHasPassphrase Indicates if the identity file requires a passphrase.
IdentityFilename Full path to the identity file used when connecting to the remote host.
IsConnected Indicates if there is an active connection to the remote host.
IsFileMirrorSupported Indicates if file mirroring is supported for this connection. This is

false if no remote DataLocation is supplied to the connect()
method.

JobStorageLocation Location on the remote host for files that are being mirrored.
UseIdentityFile Indicates if an identity file should be used when connecting to the

remote host.
Username User name for connecting to the remote host.

Examples
Mirror files from the remote data location. Assume the object job represents a job on your generic
scheduler.
remoteConnection = parallel.cluster.RemoteClusterAccess('testname');
connect(remoteConnection,'headnode1','/tmp/filemirror');
startMirrorForJob(remoteConnection,job);
submit(job)
% Wait for the job to finish
wait(job);

% Ensure that all the local files are up to date, and remove the 
% remote files
doLastMirrorForJob(remoteConnection,job);

% Get the output arguments for the job
results = fetchOutputs(job)

For more information and examples, see “Submitting from a Remote Host” on page 6-26 and
“Submitting without a Shared File System” on page 6-27.
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See Also
Topics
“Plugin Scripts for Generic Schedulers” on page 6-17

Introduced in R2011a
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ThreadPool
Parallel pool of thread workers on the local machine

Description
Use parpool to create a parallel pool of thread workers on you local machine. After you create the
pool, parallel pool features, such as parfor or parfeval, run on the workers. With the ThreadPool
object, you can interact with the parallel pool.

Creation
Create a parallel pool of thread workers on the local machine by using the parpool function.

pool = parpool("threads")

Properties
NumWorkers — Number of thread workers comprising the parallel pool
integer

This property is read-only.

Number of thread workers comprising the parallel pool, specified as an integer.

Object Functions
delete Shut down parallel pool
parfeval Execute function asynchronously on parallel pool worker
parfevalOnAll Execute function asynchronously on all workers in parallel pool

For compatibility with process workers, the following object functions are also supported. You do not
need to use them because data and file transfer is not necessary for pools of thread workers.
addAttachedFiles Attach files or folders to parallel pool
listAutoAttachedFiles List of files automatically attached to job, task, or parallel pool
ticBytes Start counting bytes transferred within parallel pool
tocBytes Read how many bytes have been transferred since calling ticBytes
updateAttachedFiles Update attached files or folders on parallel pool

See Also
parpool

Topics
“Run Code on Parallel Pools” on page 2-56
“Choose Between Thread-Based and Process-Based Environments” on page 2-61

Introduced in R2020a
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addAttachedFiles
Attach files or folders to parallel pool

Syntax
addAttachedFiles(poolobj,files)

Description
addAttachedFiles(poolobj,files) adds extra attached files to the specified parallel pool. These
files are transferred to each worker and are treated exactly the same as if they had been set at the
time the pool was opened — specified by the parallel profile or the 'AttachedFiles' argument of
the parpool function.

Examples

Add Attached Files to Current Parallel Pool

Add two attached files to the current parallel pool.

poolobj = gcp;
addAttachedFiles(poolobj,{'myFun1.m','myFun2.m'})

Input Arguments
poolobj — Pool to which files attach
pool object

Pool to which files attach, specified as a pool object.
Example: poolobj = gcp;

files — Files or folders to attach
character vector | cell array

Files or folders to attach, specified as a character vector or cell array of character vectors. Each
character vector can specify either an absolute or relative path to a file or folder.
Example: {'myFun1.m','myFun2.m'}

See Also
gcp | getAttachedFilesFolder | listAutoAttachedFiles | parpool |
updateAttachedFiles

Topics
“Add and Modify Cluster Profiles” on page 5-14

Introduced in R2013b

10 Functions

10-2



afterAll
Specify a function to invoke after all parallel.Futures complete

Syntax
outputFuture = afterAll(futures,funtocall,nout)
outputFuture = afterAll(futures,funtocall,nout,'PassFuture',passFuture)

Description
outputFuture = afterAll(futures,funtocall,nout) automatically evaluates funtocall on
the output arguments of all the futures in futures when they are all complete, and returns
outputFuture to hold the result. afterAll evaluates funtocall on the vertical concatenation of
the output arguments of all futures. If the number of output arguments of the elements in futures
differ, afterAll uses the minimum and disregards the ending output arguments. afterAll invokes
funtocall with nout output arguments.

A useful application for afterAll is to update user interfaces such as plots and apps during parallel
computations using parfeval. For example, you can send several computations to workers using
parfeval and update your user interface when all of them finish using afterAll.

outputFuture = afterAll(futures,funtocall,nout,'PassFuture',passFuture) behaves
the same if passFuture is false. If passFuture is true, afterAll invokes funtocall on the
array of futures futures and not on their output arguments. This happens even if elements of
futures encountered errors.

Examples

Call afterAll on parfeval Computations

You can use afterAll to automatically invoke functions on all of the combined outputs of your
parfeval computations.

Use parfeval to compute random vectors in the workers. With default preferences, parfeval
creates a parpool automatically if there is not one already created.

for idx = 1:10
    f(idx) = parfeval(@rand, 1, 1000, 1);
end

Display the maximum element among all of those vectors after they are created. afterAll executes
the function handle on the combined output of all the futures when they all become ready.

afterAll(f, @(r) disp(max(r)), 0);

    0.9998
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Combine afterEach and afterAll

You can combine afterEach and afterAll to automatically invoke more functions on the results of
futures. Both afterEach and afterAll generate future variables that can be used again in
afterEach and afterAll.

Use parfeval to compute random vectors in the workers. With default preferences, parfeval
creates a parpool automatically if there is not one already created.

for idx= 1:10
    f(idx) = parfeval(@rand, 1, 1000, 1);
end

Starting parallel pool (parpool) using the 'local' profile ...
connected to 8 workers.

Compute the largest element in each of those vectors when they become ready. afterEach executes
the function handle on the output of each future when they become ready and creates another future
to hold the results.

maxFuture = afterEach(f, @(r) max(r), 1);

To compute the minimum value among them, call afterAll on this new future. afterAll executes a
function on the combined output arguments of all the futures after they all complete. In this case,
afterAll executes the function min on the outputs of maxFuture after completing and creates
another future to hold the result.

minFuture = afterAll(maxFuture, @(r) min(r), 1);

You can fetch the result using fetchOutputs. fetchOutput waits until the future completes to
gather the results.

fetchOutputs(minFuture)

ans = 0.9973

You can check the result of afterEach by calling fetchOutputs on its future variable.

fetchOutputs(maxFuture)

ans = 10×1

    0.9996
    0.9989
    0.9994
    0.9973
    1.0000
    1.0000
    0.9989
    0.9994
    0.9998
    0.9999
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Update a User Interface Asynchronously Using afterEach and afterAll

You can perform asynchronous computations on workers using parfeval and leave the user
interface responsive. Use afterEach to update the user interface when intermediate computations
are ready. Use afterAll to update the user interface when all the computations are ready.

Create a simple user interface using a waitbar.

h = waitbar(0, 'Waiting...');

Use parfeval to carry out time-consuming computations in the workers, for example, eigenvalues of
random matrices. The computations happen asynchronously and the user interface updates during
computation. With default preferences, parfeval creates a parpool automatically if there is not
one already created.

for idx = 1:100
  f(idx) = parfeval(@(n) real(eig(randn(n))), 1, 5e2); 
end

Compute the largest value in each of the computations when they become ready using afterEach.
Update the proportion of finished futures in the waitbar when each of them completes using
afterEach.

maxFuture = afterEach(f, @max, 1);
updateWaitbarFuture = afterEach(f, @(~) waitbar(sum(strcmp('finished', {f.State}))/numel(f), h), 1);

Close the waitbar when all the computations are done. Use afterAll on updateWaitbarFuture to
continue automatically with a close operation. afterAll obtains the figure handle from
updateWaitbarFuture and executes its function on it.

closeWaitbarFuture = afterAll(updateWaitbarFuture, @(h) delete(h), 0);

Show a histogram after all the maximum values are computed. Use afterAll on maxFuture to
continue the operation automatically. afterAll obtains the maximum values from maxFuture and
calls histogram on them.

showsHistogramFuture = afterAll(maxFuture, @histogram, 0);

Handle Errors in Future Variables

When computations for future variables result in an error, by default, afterAll does not evaluate its
function. If you want to handle any errors, for example, you have a user interface that you want to
update, you can use the name-value pair PassFuture. When set to true, the future variable is
passed to the callback function. You can call fetchOutputs on it, process the outputs, and handle
any possible errors.
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Send computations to the workers using parfeval. With default preferences, parfeval creates a
parpool automatically if there is not one already created. If your parfeval computations result in
an error, the future variable errors, and its Error property reflects it.

errorFuture = parfeval( @(n) randn(n), 0, 0.5);

Starting parallel pool (parpool) using the 'Local' profile ...
connected to 4 workers.

wait(errorFuture);
errorFuture.Error

ans = 
  ParallelException with properties:

     identifier: 'MATLAB:NonIntegerInput'
        message: 'Size inputs must be integers.'
          cause: {}
    remotecause: {[1×1 MException]}
          stack: [1×1 struct]

If you use afterAll on that future, the callback function is not evaluated. In the code below, the
msgbox is not executed because the future errors.

afterAll(errorFuture, @() msgbox('Operation completed'), 0);

To handle futures that result in an error, use the name-value pair PassFuture when calling
afterAll. The future variable is passed to the callback function instead of its outputs. Call
fetchOutputs on it, and process its outputs. If the future results in an error, fetchOutputs throws
an error that you can catch and handle. For example, the following code shows an error dialog box.

afterAll(errorFuture, @handleError, 0, 'PassFuture',true);

function handleError (f)
try
    output = fetchOutputs(f);
    % Do something with the output
catch
    errordlg('Operation failed');
end
end

Input Arguments
futures — Futures
parallel.Future
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Futures, specified as an array of parallel.Future. funtocall is invoked on the combined outputs
of all its elements when they all become ready. You can use parfeval to create futures.

If any element of futures encounters an error, funtocall is not invoked, and outputFuture
completes with an error. To see if the future completes with an error, you can check the Error
property of outputFuture. If you cancel an element of futures, this results in the same behavior
as if the element encountered an error.
Example: future = parfeval(@rand,1,1000,1); afterAll(future,@max,1);
Data Types: parallel.Future

funtocall — Function to execute
function handle

Function to execute, specified as a function to call on the combined output arguments of all the
futures in futures when they all become ready. funtocall is evaluated on the MATLAB client, not
on the parallel pool workers.
Example: funtocall = @max
Data Types: function handle

nout — Number of outputs
integer

Number of outputs, specified as an integer, expected from funtocall.
Example: afterAll(futures,@max,1)
Data Types: scalar

passFuture — Type of input arguments to funtocall
logical scalar

Indicator, specified as a logical scalar that determines the type of input arguments to funtocall. If
set to true, the future array futures is passed to funtocall. Otherwise, the output arguments of
all futures in futures are passed to funtocall. This argument is optional and is false by default.

You can use this approach if you want to handle any errors. Set passFuture to true so that
afterAll invokes funtocall on the outputs of futures, even if they encountered errors. You must
call fetchOutputs on the input argument to funtocall to extract the results. If the future results
in an error, fetchOutputs throws an error that you can catch and handle.
Example: afterAll(futures,@(f) disp(fetchOutputs(f)),0,'PassFuture',true)
Data Types: logical scalar

Output Arguments
outputFuture — Future
parallel.Future

Future, returned as a parallel.Future to hold the results of evaluating funtocall on the
combined output arguments of all the futures in futures when they all become ready.

To extract the results, call fetchOutputs on outputFuture:

 afterAll

10-7



outputFutures = afterAll(futures,funtocall,nout);
[out1,out2,...,outM] = fetchOutputs(outputFutures);

Note that this is equivalent to calling funtocall after fetching the outputs in futures, except that
afterAll calls automatically funtocall when all elements in futures complete:

[tmp1,tmp2,...,tmpN] = fetchOutputs(futures);
[out1,out2,...,outM] = funtocall(tmp1,tmp2,...tmpN)

N is the number of outputs from futures and M is the number of outputs specified in afterAll with
the input argument nout.

Tips
• Use afterAll on any of the futures returned from parfeval, parfevalOnAll, afterEach,

afterAll, or an array containing a combination of them. For example, use afterAll to
automatically invoke more functions on the results of another afterEach or afterAll. You can
invoke afterAll on futures before and after they finish.

• Use cancel on a future returned from afterAll to cancel its execution. If you invoke afterAll
on a canceled future, this results in the same behavior as if the future encountered an error.

See Also
afterEach | parallel.Future | parfeval

Introduced in R2018a
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afterEach
Define a function to call when new data is received on a DataQueue

Syntax
listener = afterEach(queue, funtocall)

Description
listener = afterEach(queue, funtocall) specifies a function funtocall to execute each
time the queue receives new data. You can specify multiple different functions to call, because each
call to afterEach creates a new listener on the queue. If you want to specify another function, call
afterEach again. To remove the registration of the function with the queue, delete the returned
listener object.

You must call afterEach in the same process where you created the data queue, otherwise an error
occurs. After calling afterEach, any current data in the queue is dispatched immediately to the
supplied function.

Examples

Call afterEach to Dispatch Data on a Queue

If you call afterEach and there are items on the queue waiting to be dispatched, these items are
immediately dispatched to the afterEach function. Call afterEach before sending data to the
queue, to ensure that on send, the function handle specified by afterEach is called.

Construct a DataQueue and call afterEach.

q = parallel.pool.DataQueue;
afterEach(q, @disp);

If you then send messages to the queue, each message is passed to the function handle specified by
afterEach immediately.

parfor i = 1
    send(q, 2); 
end

     2

send(q, 3)

     3

You can also first send various messages to the queue. When you call afterEach, the pending
messages are passed to the afterEach function, in this example to the function handle @disp.

q = parallel.pool.DataQueue;
parfor i = 1
    send(q, 2); 
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end
send(q, 3)

afterEach(q, @disp);

     2

     3

Remove a Callback by Deleting the Listener

Construct a DataQueue and create a listener.

D = parallel.pool.DataQueue;
listener = D.afterEach(@disp);

Send some data with the value 1.

D.send(1)

     1

Delete the listener.

delete(listener) 
D.send(1)

No data is returned because you have removed the callback by deleting the listener.

Input Arguments
queue — Data queue
parallel.pool.DataQueue

Data queue, specified as a parallel.pool.DataQueue object.
Example: q = parallel.pool.DataQueue;

funtocall — Function handle
function handle

Function handle, specifying the function added to the list of functions to call when a piece of new
data is received from queue.
Example: listener = afterEach(queue, funtocall)

All callback functions must accept data as single argument.

afterEach(queue, @foo) expects a function handle @foo to a function of the form

function foo(data)
end 

When send(queue, someData) is called on the worker, someData is serialized and sent back to
the client. someData is deserialized on the client and passed as the input to foo(data).

10 Functions

10-10



Output Arguments
listener — listener
event.listener

Listener object created by afterEach, returned as the handle to an event.listener object.

See Also
event.listener | parallel.pool.DataQueue | parallel.pool.PollableDataQueue |
parfor | poll | send

Introduced in R2017a
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afterEach
Specify a function to invoke after each parallel.Future completes

Syntax
outputFuture = afterEach(futures,funtocall,nout)
outputFuture = afterEach(futures,funtocall,nout,'PassFuture',passFuture)

Description
outputFuture = afterEach(futures,funtocall,nout) automatically evaluates funtocall
on the output arguments of each of the elements in futures as they become ready. afterEach calls
funtocall with nout output arguments and produces outputFuture to hold the outputs.

A useful application for afterEach is to update user interfaces such as plots and apps during
parallel computations using parfeval. For example, you can send several computations to workers
using parfeval and update your user interface when each of those finishes using afterEach.

outputFuture = afterEach(futures,funtocall,nout,'PassFuture',passFuture)
behaves the same if passFuture is false. If passFuture is true, afterEach invokes funtocall
on each element in futures, and not on their output arguments. This happens even if elements of
futures encountered errors.

Examples

Call afterEach on parfeval Computations

You can use afterEach to automatically invoke functions on each of the results of parfeval
computations.

Use parfeval to compute random vectors in the workers. With default preferences, parfeval
creates a parpool automatically if there is not one already created.

for idx = 1:10
    f(idx) = parfeval(@rand, 1, 1000, 1);
end

Display the maximum element in each of those vectors after they are created. afterEach executes
the function handle on the output of each future when they become ready.

afterEach(f, @(r) disp(max(r)), 0);

    0.9975

    0.9990

    0.9982

    0.9991
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    0.9982

    0.9998

    0.9999

    0.9986

    0.9996

    0.9990

Combine afterEach and afterAll

You can combine afterEach and afterAll to automatically invoke more functions on the results of
futures. Both afterEach and afterAll generate future variables that can be used again in
afterEach and afterAll.

Use parfeval to compute random vectors in the workers. With default preferences, parfeval
creates a parpool automatically if there is not one already created.

for idx= 1:10
    f(idx) = parfeval(@rand, 1, 1000, 1);
end

Starting parallel pool (parpool) using the 'local' profile ...
connected to 8 workers.

Compute the largest element in each of those vectors when they become ready. afterEach executes
the function handle on the output of each future when they become ready and creates another future
to hold the results.

maxFuture = afterEach(f, @(r) max(r), 1);

To compute the minimum value among them, call afterAll on this new future. afterAll executes a
function on the combined output arguments of all the futures after they all complete. In this case,
afterAll executes the function min on the outputs of maxFuture after completing and creates
another future to hold the result.

minFuture = afterAll(maxFuture, @(r) min(r), 1);

You can fetch the result using fetchOutputs. fetchOutput waits until the future completes to
gather the results.

fetchOutputs(minFuture)

ans = 0.9973

You can check the result of afterEach by calling fetchOutputs on its future variable.

fetchOutputs(maxFuture)

ans = 10×1

    0.9996
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    0.9989
    0.9994
    0.9973
    1.0000
    1.0000
    0.9989
    0.9994
    0.9998
    0.9999

Update a User Interface Asynchronously Using afterEach and afterAll

You can perform asynchronous computations on workers using parfeval and leave the user
interface responsive. Use afterEach to update the user interface when intermediate computations
are ready. Use afterAll to update the user interface when all the computations are ready.

Create a simple user interface using a waitbar.

h = waitbar(0, 'Waiting...');

Use parfeval to carry out time-consuming computations in the workers, for example, eigenvalues of
random matrices. The computations happen asynchronously and the user interface updates during
computation. With default preferences, parfeval creates a parpool automatically if there is not
one already created.

for idx = 1:100
  f(idx) = parfeval(@(n) real(eig(randn(n))), 1, 5e2); 
end

Compute the largest value in each of the computations when they become ready using afterEach.
Update the proportion of finished futures in the waitbar when each of them completes using
afterEach.

maxFuture = afterEach(f, @max, 1);
updateWaitbarFuture = afterEach(f, @(~) waitbar(sum(strcmp('finished', {f.State}))/numel(f), h), 1);

Close the waitbar when all the computations are done. Use afterAll on updateWaitbarFuture to
continue automatically with a close operation. afterAll obtains the figure handle from
updateWaitbarFuture and executes its function on it.

closeWaitbarFuture = afterAll(updateWaitbarFuture, @(h) delete(h), 0);

Show a histogram after all the maximum values are computed. Use afterAll on maxFuture to
continue the operation automatically. afterAll obtains the maximum values from maxFuture and
calls histogram on them.
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showsHistogramFuture = afterAll(maxFuture, @histogram, 0);

Handle Errors in Future Variables

When computations for future variables result in an error, by default, afterEach does not evaluate
its function on the elements that failed. If you want to handle any errors, for example, you have a user
interface that you want to update, you can use the name-value pair PassFuture. When set to true,
the future variable is passed to the callback function. You can call fetchOutputs on it, process the
outputs, and handle any possible errors.

Send computations to the workers using parfeval. With default preferences, parfeval creates a
parpool automatically if there is not one already created. If your parfeval computations result in
an error, the future variable errors, and its Error property reflects it.

errorFuture = parfeval( @(n) randn(n), 0, 0.5);
wait(errorFuture);
errorFuture.Error

ans = 
  ParallelException with properties:

     identifier: 'MATLAB:NonIntegerInput'
        message: 'Size inputs must be integers.'
          cause: {}
    remotecause: {[1×1 MException]}
          stack: [1×1 struct]

If you use afterEach on that future, the callback function is not evaluated on those elements in the
future that errored. In the code below, the msgbox is not executed because the future errors.

afterEach(errorFuture, @() msgbox('Operation completed'), 0);

To handle futures that result in errors, use the name-value pair PassFuture when calling
afterEach. The future variable is passed to the callback function instead of its outputs. Call
fetchOutputs on the future variable, and process its outputs. If the future results in an error,
fetchOutputs throws an error that you can catch and handle. The the following code shows an
error dialog box.

afterEach(errorFuture, @handleError, 0, 'PassFuture',true);

function handleError (f)
try
    output = fetchOutputs(f);
    % Do something with the output
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catch
    errordlg('Operation failed');
end
end

Input Arguments
futures — Futures
parallel.Future

Futures, specified as an array of parallel.Future. funtocall is invoked on each of its elements
when they become ready. You can use parfeval to create a future.

If an element of futures encounters an error, funtocall is not evaluated for that element of
futures, however, it is evaluated for other elements of futures that do not encounter errors. To see
if there are any futures with errors, you can check the Error property of outputFuture. This
property is an empty cell array if there are no errors. If there are errors, it is a cell array that
contains as many cells as futures in futures. A cell contains an error if the corresponding element of
futures encountered an error, and is otherwise empty. If you cancel an element of futures, this
results in the same behavior as if the element encountered an error.
Example: future = parfeval(@rand,1,1000,1); afterEach(future,@max,1);
Data Types: parallel.Future

funtocall — Function to execute
function handle

Function to execute, specified as a function to call on the output arguments of each of the futures in
futures when they become ready. funtocall is evaluated on the MATLAB client and not on the
parallel pool workers.
Example: funtocall = @max
Data Types: function handle

nout — Number of outputs
integer

Number of outputs, specified as an integer, expected from funtocall.
Example: afterEach(futures,@max,1)
Data Types: scalar

passFuture — Type of input arguments to funtocall
logical scalar

Indicator, specified as a logical scalar that determines the type of input arguments to funtocall. If
set to true, each future in futures is passed to funtocall. Otherwise, the output arguments of
each future in futures are passed to funtocall. This argument is optional and is false by default.

You can use this approach if you want to handle any errors. Set passFuture to true so that
afterEach invokes funtocall on each element in futures, even if they encountered errors. You
must call fetchOutputs on the input argument to funtocall to extract the results. If there are any
futures with errors, fetchOutputs throws an error that you can catch and handle.
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Example: afterEach(futures,@(f) disp(fetchOutputs(f)),0,'PassFuture',true)
Data Types: logical scalar

Output Arguments
outputFuture — Future
parallel.Future

Future, returned as a parallel.Future to hold the results of evaluating funtocall on each of the
futures in futures when they become ready. To extract the results, call fetchOutputs on
outputFuture.

Tips
• Use afterEach on any of the futures returned from parfeval, parfevalOnAll, afterAll,

afterEach, or an array containing a combination of them. For example, use afterEach to
automatically invoke more functions on the results of another afterAll or afterEach. You can
invoke afterEach on futures before and after they finish.

• Use cancel on a future returned from afterEach to cancel its execution. If you invoke
afterEach on a canceled future, afterEach behaves the same way as if the future had an error.

See Also
afterAll | parallel.Future | parfeval

Introduced in R2018a
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arrayfun
Apply function to each element of array on GPU

Syntax
B = arrayfun(FUN,A)
B = arrayfun(FUN,A1,...,An)
[B1,...,Bm] = arrayfun(FUN, ___ )

Description

Note This function behaves similarly to the MATLAB function arrayfun, except that the evaluation
of the function happens on the GPU, not on the CPU. Any required data not already on the GPU is
moved to GPU memory. The MATLAB function passed in for evaluation is compiled and then executed
on the GPU. All output arguments are returned as gpuArray objects. You can retrieve gpuArray data
using the gather function.

B = arrayfun(FUN,A) applies the function FUN to each element of the gpuArray A. arrayfun then
concatenates the outputs from FUN into output gpuArray B. B is the same size as A and B(i,j,...)
= FUN(A(i,j,...)). The input argument FUN is a function handle to a MATLAB function that takes
one input argument and returns a scalar value. FUN is called as many times as there are elements of
A.

You cannot specify the order in which arrayfun calculates the elements of B or rely on them being
done in any particular order.

B = arrayfun(FUN,A1,...,An) applies FUN to the elements of the arrays A1,...,An, so that
B(i,j,...) = FUN(A1(i,j,...),...,An(i,j,...)). The function FUN must take n input
arguments and return a scalar. The nonsingleton dimensions of the inputs A1,...,An must all
match, or the inputs must be scalar. Any singleton dimensions or scalar inputs are virtually replicated
before being input to the function FUN.

[B1,...,Bm] = arrayfun(FUN, ___ ) returns multiple output arrays B1,...,Bm when the
function FUN returns m output values. arrayfun calls FUN each time with as many outputs as there
are in the call to arrayfun, that is, m times. If you call arrayfun with more output arguments than
supported by FUN, MATLAB generates an error. FUN can return output arguments having different
data types, but the data type of each output must be the same each time FUN is called.

Examples

Run a Function on the GPU

In this example, a small function applies correction data to an array of measurement data. The
function defined in the file myCal.m is shown here.
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function c = myCal(rawdata, gain, offset)
    c = (rawdata .* gain) + offset;
end

The function performs only element-wise operations when applying a gain factor and offset to each
element of the rawdata array.

Create a nominal measurement.

meas = ones(1000)*3; % 1000-by-1000 matrix

The function allows the gain and offset to be arrays of the same size as rawdata, so that unique
corrections can be applied to individual measurements. In a typical situation, you can keep the
correction data on the GPU so that you do not have to transfer it for each application:

gn   = rand(1000,'gpuArray')/100 + 0.995; 
offs = rand(1000,'gpuArray')/50  - 0.01;

Run your calibration function on the GPU.

corrected = arrayfun(@myCal,meas,gn,offs);

The function runs on the GPU because the input arguments gn and offs are already in GPU memory.
The input array meas is converted to a gpuArray before the function runs.

Retrieve the corrected results from the GPU to the MATLAB workspace.

results = gather(corrected);

Use a Function with Multiple Outputs

You can define a MATLAB function as follows.

function [o1,o2] = aGpuFunction(a,b,c)
    o1 = a + b;
    o2 = o1 .* c + 2;
end

Evaluate this function on the GPU.

s1 = rand(400,'gpuArray');
s2 = rand(400,'gpuArray');
s3 = rand(400,'gpuArray');
[o1,o2] = arrayfun(@aGpuFunction,s1,s2,s3);
whos

 Name        Size         Bytes  Class

  o1        400x400          108  gpuArray
  o2        400x400          108  gpuArray
  s1        400x400          108  gpuArray
  s2        400x400          108  gpuArray
  s3        400x400          108  gpuArray
Use gather to retrieve the data from the GPU to the MATLAB

Use gather to retrieve the data from the GPU to the MATLAB workspace.
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d = gather(o2);

Use Random Number Functions with arrayfun

The function myfun.m generates and uses a random number R.

function Y = myfun(X)
    R = rand();
    Y = R.*X;
end

If you use arrayfun to run this function with an input variable that is a gpuArray, the function runs
on the GPU. The size of X determines the number of random elements to generate. The following code
passes the gpuArray matrix G to myfun on the GPU.

G = 2*ones(4,4,'gpuArray')
H = arrayfun(@myfun, G)

Because G is a 4-by-4 gpuArray, myfun generates 16 random value scalar elements for R, one for each
calculation with an element of G.

Input Arguments
FUN — Function to apply
function handle

Function to apply to the elements of the input arrays, specified as a function handle. FUN must return
scalar values. For each output argument, FUN must return values of the same class each time it is
called. FUN must accept numerical or logical input data.

FUN must be a handle to a function that is written in the MATLAB language. You cannot specify FUN
as a handle to a MEX-function.

FUN can contain the following built-in MATLAB functions and operators.
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abs
and
acos
acosh
acot
acoth
acsc
acsch
asec
asech
asin
asinh
atan
atan2
atanh
beta
betaln
bitand
bitcmp
bitget
bitor
bitset
bitshift
bitxor
ceil
complex
conj
cos
cosh
cot
coth
csc
csch

double
eps
eq
erf
erfc
erfcinv
erfcx
erfinv
exp
expm1
false
fix
floor
gamma
gammaln
ge
gt
hypot
imag
Inf
int8
int16
int32
int64
intmax
intmin
isfinite
isinf
isnan
ldivide
le
log
log2

log10
log1p
logical
lt
max
min
minus
mod
NaN
ne
not
ones
or
pi
plus
pow2
power
rand
randi
randn
rdivide
real
reallog
realmax
realmin
realpow
realsqrt
rem
round
sec
sech
sign
sin

single
sinh
sqrt
tan
tanh
times
true
uint8
uint16
uint32
uint64
xor
zeros

+
-
.*
./
.\
.^
==
~=
<
<=
>
>=
&
|
~
&&
||

Scalar expansion versions of
the following:

*
/
\
^

Branching instructions:

break
continue
else
elseif
for
if
return
while

Functions that create arrays (such as Inf, NaN, ones, rand, randi, randn, and zeros) do not
support size specifications as input arguments. Instead, the size of the generated array is determined
by the size of the input variables to your functions. Enough array elements are generated to satisfy
the needs of your input or output variables. You can specify the data type using both class and
"like" syntaxes. The following examples show supported syntaxes for array-creation functions:

a = rand;
b = ones();
c = zeros("like", x);
d = Inf("single");
e = randi([0 9], "unit32");

When you use rand, randi, and randn to generate random numbers within FUN, each element is
generated from a different substream. For more information about generating random numbers on
the GPU, see “Random Number Streams on a GPU” on page 8-6.

A — Input array
scalars | vectors | matrices | multidimensional arrays

Input array, specified as scalars, vectors, matrices, or multidimensional arrays. At least one input
array argument must be a gpuArray for arrayfun to run on the GPU. Each array that is stored in
CPU memory is converted to a gpuArray before the function is evaluated. If you plan to make several
calls to arrayfun with the same array, it is more efficient to convert that array to a gpuArray.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Output Arguments
B — Output array
gpuArray

Output array, returned as a gpuArray.

Tips
• The first time you call arrayfun to run a particular function on the GPU, there is some overhead

time to set up the function for GPU execution. Subsequent calls of arrayfun with the same
function can run faster.

• Nonsingleton dimensions of input arrays must match each other. In other words, the
corresponding dimensions of arguments A1,...,An, must be equal to each other, or equal to one.
Whenever a dimension of an input array is singleton (equal to 1), arrayfun uses singleton
expansion. The array is virtually replicated along the singleton dimension to match the largest of
the other arrays in that dimension. When a dimension of an input array is singleton and the
corresponding dimension in another argument array is zero, arrayfun virtually diminishes the
singleton dimension to 0.

Each dimension of the output array B is the same size as the largest of the input arrays in that
dimension for nonzero size, or zero otherwise. The following code shows how dimensions of size 1
are scaled up or down to match the size of the corresponding dimension in other arguments.

R1 = rand(2,5,4,'gpuArray');
R2 = rand(2,1,4,3,'gpuArray');
R3 = rand(1,5,4,3,'gpuArray');
R = arrayfun(@(x,y,z)(x+y.*z),R1,R2,R3);
size(R)

  2     5     4     3

R1 = rand(2,2,0,4,'gpuArray');
R2 = rand(2,1,1,4,'gpuArray');
R = arrayfun(@plus,R1,R2);
size(R)

  2     2     0     4
• Because the operations supported by arrayfun are strictly element-wise, and each computation

of each element is performed independently of the others, certain restrictions are imposed:

• Input and output arrays cannot change shape or size.
• Array-creation functions such as rand do not support size specifications. Arrays of random

numbers have independent streams for each element.
• Like arrayfun in MATLAB, matrix exponential power, multiplication, and division (^, *, /, \)

perform element-wise calculations only.
• Operations that change the size or shape of the input or output arrays (cat, reshape, and so on)

are not supported.
• Read-only indexing (subsref) and access to variables of the parent (outer) function workspace

from within nested functions is supported. You can index variables that exist in the function before
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the evaluation on the GPU. Assignment or subsasgn indexing of these variables from within the
nested function is not supported. For an example of the supported usage, see “Stencil Operations
on a GPU”.

• Anonymous functions do not have access to their parent function workspace.
• Overloading the supported functions is not allowed.
• The code cannot call scripts.
• There is no ans variable to hold unassigned computation results. Make sure to explicitly assign to

variables the results of all calculations.
• The following language features are not supported: persistent or global variables, parfor, spmd,

switch, and try/catch.
• P-code files cannot contain a call to arrayfun with gpuArray data.

See Also
gather | gpuArray | pagefun

Topics
“Improve Performance of Element-wise MATLAB® Functions on the GPU using ARRAYFUN”
“Using GPU ARRAYFUN for Monte-Carlo Simulations”

Introduced in R2010b
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batch
Run MATLAB script or function on worker

Syntax
j = batch(script)
j = batch(myCluster,script)
j = batch(fcn,N,{x1,...,xn})
j = batch(myCluster,fcn,N,{x1,...,xn})
j = batch( ___ ,Name,Value)

Description
j = batch(script) runs the script file script on a worker in the cluster specified by the default
cluster profile. (Note: Do not include the .m file extension with the script name.) The function returns
j, a handle to the job object that runs the script. The script file script is copied to the worker.

j = batch(myCluster,script) is identical to batch(script) except that the script runs on a
worker in the cluster specified by the cluster object myCluster.

j = batch(fcn,N,{x1,...,xn}) runs the function fcn on a worker in the cluster specified by the
default cluster profile. The function returns j, a handle to the job object that runs the function. The
function is evaluated with the given arguments, x1,...,xn, and returns N output arguments. The
function file for fcn is copied to the worker. (Note: Do not include the .m file extension with the
function name argument.)

j = batch(myCluster,fcn,N,{x1,...,xn}) is identical to batch(fcn,N,{x1,...,xn})
except that the function runs on a worker in the cluster specified by the cluster object myCluster.

j = batch( ___ ,Name,Value) specifies options that modify the behavior of a job using one or
more name-value pair arguments. These options support batch for functions and scripts, unless
otherwise indicated. Use this syntax in addition to any of the input argument combinations in
previous syntaxes.

Examples

Run Script as Batch Job

Use batch to offload work to a MATLAB worker session that runs in the background. You can
continue using MATLAB while computations take place.

Run a script as a batch job by using the batch function. By default, batch uses your default cluster
profile. Check your default cluster profile on the MATLAB Home tab, in the Environment section, in
Parallel > Select a Default Cluster. Alternatively, you can specify a cluster profile with the
'Profile' name-value pair argument.

job = batch('myScript');

batch does not block MATLAB and you can continue working while computations take place.
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If you want to block MATLAB until the job finishes, use the wait function on the job object.

wait(job);

By default, MATLAB saves the Command Window output from the batch job to the diary of the job. To
retrieve it, use the diary function.

diary(job)

--- Start Diary ---
n = 100

--- End Diary ---

After the job finishes, fetch the results by using the load function.

load(job,'x');
plot(x)

If you want to load all the variables in the batch job, use the load function without arguments.

When you have fetched all the required variables, delete the job object to clean up its data and avoid
consuming resources unnecessarily.

delete(job);
clear job

Note that if you send a script file using batch, MATLAB transfers all the workspace variables to the
cluster, even if your script does not use them. The data transfer time for a large workspace can be
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substantial. As a best practice, convert your script to a function file to avoid this communication
overhead. For an example that uses a function, see “Run Batch Job and Access Files from Workers” on
page 10-26.

For more advanced options with batch, see “Run Batch Job and Access Files from Workers” on page
10-26.

Run Batch Job and Access Files from Workers

You can offload your computations to run in the background by using batch. If your code needs
access to files, you can use additional options, such as 'AttachedFiles' or 'AdditionalPaths',
to make the data accessible. You can close or continue working in MATLAB while computations take
place and recover the results later.

Prepare Example

Prepare and copy the supporting files for this example by using the following command.

prepareSupportingFiles;

Run Batch Job

Create a cluster object using parcluster. By default, parcluster uses your default cluster profile.
Check your default cluster profile on the MATLAB Home tab, in the Environment section, in
Parallel > Select a Default Cluster.

c = parcluster();

Place your code inside a function and submit it as a batch job by using batch. For an example of a
custom function, see the supporting function myFunction. Specify the expected number of output
arguments and a cell array with inputs to the function.

If your code uses a parallel pool, use the 'Pool' name-value pair argument to create a parallel pool
with the number of workers that you specify. batch uses an additional worker to run the function
itself.

By default, batch changes the initial working directory of the workers to the current folder of the
MATLAB client. It can be useful to control the initial working directory in the workers. For example,
you might want to control it if your cluster uses a different filesystem, and therefore the paths are
different, such as when you submit from a Windows client machine to a Linux cluster.

• To keep the initial working directory of the workers and use their default, set 'CurrentFolder'
to '.'.

• To change the initial working directory, set 'CurrentFolder' to a folder of your choice.

This example uses a parallel pool with three workers and chooses a temporary location for the initial
working directory.

job = batch(c,@myFunction,1,{}, ...
    'Pool',3, ...
    'CurrentFolder',tempdir);

batch offloads the computations in your function to a parallel worker, so you can continue working in
MATLAB while computations take place.
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If you want to block MATLAB until the job completes, use the wait function on the job object.

wait(job);

To retrieve the results, use fetchOutputs on the job object.

If your code has an error, then fetchOutputs throws an error. You can access error information by
checking the Error property of Task objects in the job. In this example, the code depends on a file
that the workers cannot find.

getReport(job.Tasks(1).Error)

ans = 
    'Error using myFunction (line 4)
     Unable to read file 'mydata2.dat'. No such file or directory.'

Access Files from Workers

By default, batch automatically analyzes your code and transfers required files to the workers. In
some cases, you must explicitly transfer those files--for example, when you determine the name of a
file at runtime.

In this example, myFunction accesses the supporting file mydata.dat, which batch automatically
detects and transfers. The function also accesses mydata1.dat, but it resolves the name of the file at
runtime, so the automatic dependency analysis does not detect it.

type myFunction.m 

function X = myFunction()    
    A = load("mydata.dat"); 
    X = zeros(flip(size(A)));
    parfor i = 1:3
       B = load("mydata"+i+".dat");
       X = X + A\B;
    end
end

If the data is in a location that the workers can access, you can use the name-value pair argument
'AdditionalPaths' to specify the location. 'AdditionalPaths' adds this path to the MATLAB
search path of the workers and makes the data visible to them.

pathToData = pwd;
job(2) = batch(c,@myFunction,1,{}, ...
    'Pool',3, ...
    'CurrentFolder',tempdir, ...
    'AdditionalPaths',pathToData);
wait(job(2));

If the data is in a location that the workers cannot access, you can transfer files to the workers by
using the 'AttachedFiles' name-value pair argument.

job(3) = batch(c,@myFunction,1,{}, ...
    'Pool',3, ...
    'CurrentFolder',tempdir, ...
    'AttachedFiles',"mydata"+string(1:3)+".dat");
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Find Existing Job

You can close MATLAB after job submission and retrieve the results later. Before you close MATLAB,
make a note of the job ID.

job3ID = job(3).ID

job3ID = 19

When you open MATLAB again, you can find the job by using the findJob function.

job(3) = findJob(c,'ID',job3ID);
wait(job(3));

Alternatively, you can use the Job Monitor to track your job. You can open it from the MATLAB Home
tab, in the Environment section, in Parallel > Monitor Jobs.

Retrieve Results and Clean Up Data

To retrieve the results of a batch job, use the fetchOutputs function. fetchOutputs returns a cell
array with the outputs of the function run with batch.

X = fetchOutputs(job(3))

X = 1×1 cell array
    {40×207 double}

When you have retrieved all the required outputs and do not need the job object anymore, delete it to
clean up its data and avoid consuming resources unnecessarily.

delete(job)
clear job

Input Arguments
script — MATLAB script
character vector | string

MATLAB script to be evaluated by the worker, specified as a character vector or string.
Example: batch('aScript');
Data Types: char | string

myCluster — Cluster
parallel.Cluster object

Cluster, specified as a parallel.Cluster object that represents cluster compute resources. To
create the object, use the parcluster function.
Example: cluster = parcluster; batch(cluster,'aScript');
Data Types: parallel.Cluster

fcn — Function to be evaluated by the worker
function handle | character vector

Function to be evaluated by the worker, specified as a function handle or function name.
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Example: batch(@myFunction,1,{x,y});
Data Types: char | string | function_handle

N — Number of outputs
nonnegative integer

Number of outputs expected from the evaluated function fcn, specified as a nonnegative integer.
Example: batch(@myFunction,1,{x,y});
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

{x1,...,xn} — Input arguments
cell array

Input arguments to the function fcn, specified as a cell array.
Example: batch(@myFunction,1,{x,y});
Data Types: cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: j = batch(@myFunction,1,{x,y},'Pool',3);

Workspace — Workspace on the worker
1-by-1 struct

Workspace on the worker just before the script or function is called, specified as the comma-
separated pair consisting of 'Workspace' and a 1-by-1 struct. The field names of the struct define
the names of the variables, and the field values are assigned to the workspace variables. By default,
this parameter has a field for every variable in the current workspace where batch is executed. This
parameter supports only the running of scripts.
Example: workspace.myVar = 5; j = batch('aScript','Workspace',workspace);
Data Types: struct

Profile — Cluster profile
character vector | string

Cluster profile used to identify the cluster, specified as the comma-separated pair consisting of
'Profile' and a character vector or string. If this option is omitted, the default profile is used to
identify the cluster and is applied to the job and task properties.
Example: j = batch('aScript','Profile','local');
Data Types: char | string

AdditionalPaths — Paths to add to workers
character vector | string array | cell array of character vectors

Paths to add to the MATLAB search path of the workers before the script or function executes,
specified as the comma-separated pair consisting of 'AdditionalPaths' and a character vector,
string array, or cell array of character vectors.
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The default search path might not be the same on the workers as it is on the client; the path
difference could be the result of different current working folders (cwd), platforms, or network file
system access. Specifying the 'AdditionalPaths' name-value pair argument helps ensure that
workers look for files, such as code files, data files, or model files, in the correct locations.

You can use 'AdditionalPaths' to access files in a shared file system. Note that path
representations can vary depending on the target machines. 'AdditionalPaths' must be the paths
as seen by the machines in the cluster. For example, if Z:\data on your local Windows machine is /
network/data to your Linux cluster, then add the latter to 'AdditionalPaths'. If you use a
datastore, use 'AlternateFileSystemRoots' instead to deal with other representations. For more
information, see “Set Up Datastore for Processing on Different Machines or Clusters” (MATLAB).

Note that AdditionalPaths only helps to find files when you refer to them using a relative path or
file name, and not an absolute path.
Example: j = batch(@myFunction,1,{x,y},'AdditionalPaths','/network/data/');
Data Types: char | string | cell

AttachedFiles — Files or folders to transfer
character vector | string array | cell array of character vectors

Files or folders to transfer to the workers, specified as the comma-separated pair consisting of
'AttachedFiles' and a character vector, string array, or cell array of character vectors.
Example: j = batch(@myFunction,1,{x,y},'AttachedFiles','myData.dat');
Data Types: char | string | cell

AutoAddClientPath — Flag to add user-added entries on client path to worker path
true (default) | false

Flag to add user-added entries on the client path to worker paths, specified as the comma-separated
pair consisting of 'AutoAddClientPath' and a logical value.
Example: j = batch(@myFunction,1,{x,y},'AutoAddClientPath',false);
Data Types: logical

AutoAttachFiles — Flag to enable dependency analysis
true (default) | false

Flag to enable dependency analysis and automatically attach code files to the job, specified as the
comma-separated pair consisting of 'AutoAttachFiles' and a logical value. If you set the value to
true, the batch script or function is analyzed and the code files that it depends on are automatically
transferred to the workers.
Example: j = batch(@myFunction,1,{x,y},'AutoAttachFiles',true);
Data Types: logical

CurrentFolder — Folder in which the script or function executes
character vector | string

Folder in which the script or function executes, specified as the comma-separated pair consisting of
'CurrentFolder' and a character vector or string. There is no guarantee that this folder exists on
the worker. The default value for this property is the current directory of MATLAB when the batch
command is executed. If the argument is '.', there is no change in folder before batch execution.
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Example: j = batch(@myFunction,1,{x,y},'CurrentFolder','.');
Data Types: char | string

CaptureDiary — Flag to collect the diary
true (default) | false

Flag to collect the diary from the function call, specified as the comma-separated pair consisting of
'CaptureDiary' and a logical value. For information on the collected data, see diary.
Example: j = batch('aScript','CaptureDiary',false);
Data Types: logical

EnvironmentVariables — Environment variables to copy
character vector | string array | cell array of character vectors

Environment variables to copy from the client session to the workers, specified as the comma-
separated pair consisting of 'EnvironmentVariables' and a character vector, string array, or cell
array of character vectors. The names specified here are appended to the EnvironmentVariables
property specified in the applicable parallel profile to form the complete list of environment variables.
Listed variables that are not set are not copied to the workers. These environment variables are set
on the workers for the duration of the batch job.
Example: j = batch('aScript','EnvironmentVariables',"MY_ENV_VAR");
Data Types: char | string | cell

Pool — Number of workers to make into a parallel pool
0 (default) | nonnegative integer | 2-element vector of nonnegative integers

Number of workers to make into a parallel pool, specified as the comma-separated pair consisting of
'Pool' and either:

• A nonnegative integer.
• A 2-element vector of nonnegative integers, which is interpreted as a range. The size of the

resulting parallel pool is as large as possible in the range requested.

In addition, note that batch uses another worker to run the batch job itself.

The script or function uses this pool to execution statements such as parfor and spmd that are
inside the batch code. Because the pool requires N workers in addition to the worker running the
batch, the cluster must have at least N+1 workers available. You do not need a parallel pool already
running to execute batch, and the new pool that batch creates is not related to a pool you might
already have open. For more information, see “Run a Batch Job with a Parallel Pool” on page 1-9.

If you use the default value, 0, the script or function runs on only a single worker and not on a
parallel pool.
Example: j = batch(@myFunction,1,{x,y},'Pool',4);
Example: j = batch(@myFunction,1,{x,y},'Pool',[2,6]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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Output Arguments
j — Job
parallel.Job

Job that runs the script or function, returned as a parallel.Job object.
Example: j = batch('aScript');
Data Types: parallel.Job

Tips
To view the status or track the progress of a batch job, use the Job Monitor, as described in “Job
Monitor” on page 5-24. You can also use the Job Monitor to retrieve a job object for a batch job that
was created in a different session, or for a batch job that was created without returning a job object
from the batch call.

Delete any batch jobs you no longer need to avoid consuming cluster storage resources unnecessarily.

See Also
delete | diary | fetchOutputs (Job) | findJob | load | wait

Introduced in R2008a
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bsxfun
Binary singleton expansion function for gpuArray

Syntax
C = bsxfun(FUN,A,B)

Description

Note

• The function arrayfun offers improved functionality compared to bsxfun. arrayfun is
recommended.

• This function behaves similarly to the MATLAB function bsxfun, except that the evaluation of the
function happens on the GPU, not on the CPU. Any required data not already on the GPU is moved
to GPU memory. The MATLAB function passed in for evaluation is compiled and then executed on
the GPU. All output arguments are returned as gpuArray objects. You can retrieve gpuArray data
using the gather function.

C = bsxfun(FUN,A,B) applies the element-by-element binary operation specified by FUN to arrays
A and B, with singleton expansion enabled.

Examples

Deviation of Matrix Elements from Column Mean

Use bsxfun with a matrix to subtract the mean of each column from all elements in that column.
Then normalise by the standard deviation of each column.

A = rand(4,'gpuArray');
B = bsxfun(@minus,A,mean(A));
C = bsxfun(@rdivide,B,std(B))

Evaluate Combinations of Inputs

You can use bsxfun to evaluate a function for different combinations of inputs.

A = rand(4,'gpuArray');
B = bsxfun(@minus,A,mean(A));
C = bsxfun(@rdivide,B,std(B))

C =

   -1.2957   -1.1587   -0.8727    0.2132
   -0.2071    0.9960    0.3272   -1.2763
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    0.4786    0.6523   -0.7228    1.1482
    1.0243   -0.4896    1.2684   -0.0851

Create a function handle that represents the function f(a,b) = 1 - ae-b. Use bsxfun to apply the
function to vectors a and b. bsxfun uses singleton expansion to expand the vectors into matrices and
evaluates the function with all permutations of the input variables.

a = gpuArray(1:7);
b = gpuArray(pi*[0 1/4 1/2 3/4 1 5/4 6/4 7/4 2]).';
fun = @(a,b) 1 - a.*exp(-b);
c = bsxfun(fun,a,b)

c =

         0   -1.0000   -2.0000   -3.0000   -4.0000   -5.0000   -6.0000
    0.5441    0.0881   -0.3678   -0.8238   -1.2797   -1.7356   -2.1916
    0.7921    0.5842    0.3764    0.1685   -0.0394   -0.2473   -0.4552
    0.9052    0.8104    0.7157    0.6209    0.5261    0.4313    0.3365
    0.9568    0.9136    0.8704    0.8271    0.7839    0.7407    0.6975
    0.9803    0.9606    0.9409    0.9212    0.9015    0.8818    0.8621
    0.9910    0.9820    0.9731    0.9641    0.9551    0.9461    0.9371
    0.9959    0.9918    0.9877    0.9836    0.9795    0.9754    0.9713
    0.9981    0.9963    0.9944    0.9925    0.9907    0.9888    0.9869

Input Arguments
FUN — Binary function to apply
function handle

Function to apply to the elements of the input arrays, specified as a function handle. FUN must be a
handle to a supported element-wise function, or an element-wise function written in the MATLAB
language that uses supported functions and syntax. Fun must return scalar values. For each output
argument, FUN must return values of the same class each time it is called.

FUN must be a handle to a function that is written in the MATLAB language. You cannot specify FUN
as a handle to a MEX-function.

FUN can contain the following built-in MATLAB functions and operators.
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abs
and
acos
acosh
acot
acoth
acsc
acsch
asec
asech
asin
asinh
atan
atan2
atanh
beta
betaln
bitand
bitcmp
bitget
bitor
bitset
bitshift
bitxor
ceil
complex
conj
cos
cosh
cot
coth
csc
csch

double
eps
eq
erf
erfc
erfcinv
erfcx
erfinv
exp
expm1
false
fix
floor
gamma
gammaln
ge
gt
hypot
imag
Inf
int8
int16
int32
int64
intmax
intmin
isfinite
isinf
isnan
ldivide
le
log
log2

log10
log1p
logical
lt
max
min
minus
mod
NaN
ne
not
ones
or
pi
plus
pow2
power
rand
randi
randn
rdivide
real
reallog
realmax
realmin
realpow
realsqrt
rem
round
sec
sech
sign
sin

single
sinh
sqrt
tan
tanh
times
true
uint8
uint16
uint32
uint64
xor
zeros

+
-
.*
./
.\
.^
==
~=
<
<=
>
>=
&
|
~
&&
||

Scalar expansion versions of
the following:

*
/
\
^

Branching instructions:

break
continue
else
elseif
for
if
return
while

Functions that create arrays (such as Inf, NaN, ones, rand, randi, randn, and zeros) do not
support size specifications as input arguments. Instead, the size of the generated array is determined
by the size of the input variables to your functions. Enough array elements are generated to satisfy
the needs of your input or output variables. You can specify the data type using both class and
"like" syntaxes. The following examples show supported syntaxes for array-creation functions:

a = rand;
b = ones();
c = zeros("like", x);
d = Inf("single");
e = randi([0 9], "unit32");

When you use rand, randi, and randn to generate random numbers within FUN, each element is
generated from a different substream. For more information about generating random numbers on
the GPU, see “Random Number Streams on a GPU” on page 8-6.

A,B — Input arrays
scalars | vectors | matrices | multidimensional arrays

Input arrays, specified as scalars, vectors, matrices, or multidimensional arrays. Inputs A and B must
have compatible sizes. For more information, see “Compatible Array Sizes for Basic Operations”
(MATLAB). Whenever a dimension of A or B is singleton (equal to one), bsxfun virtually replicates
the array along that dimension to match the other array. In the case where a dimension of A or B is
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singleton, and the corresponding dimension in the other array is zero, bsxfun virtually diminishes
the singleton dimension to zero.

At least one of the inputs must be a gpuArray. Each array that is stored on CPU memory is converted
to a gpuArray before the function is evaluated. If you plan to make several calls to bsxfun with the
same array, it is more efficient to convert that array to a gpuArray.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical
Complex Number Support: Yes

Output Arguments
C — Output array
scalar | vector | matrix | multidimensional array

Output array, returned as a scalar, vector, matrix, or multidimensional array, depending on the sizes
of A and B. C is returned as a gpuArray.

Tips
• The first time you call bsxfun to run a particular function on the GPU, there is some overhead

time to set up the function for GPU execution. Subsequent calls of bsxfun with the same function
can run faster.

• Nonsingleton dimensions of input arrays must match each other. In other words, the
corresponding dimensions of arguments A, B, etc., must be equal to each other, or equal to one.
Whenever a dimension of an input array is singleton (equal to 1), bsxfun uses singleton
expansion. The array is replicated along the singleton dimension to match the largest of the other
arrays in that dimension. When a dimension of an input array is singleton and the corresponding
dimension in another argument array is zero, bsxfun virtually diminishes the singleton dimension
to 0.

Each dimension of the output array C is the same size as the largest of the input arrays in that
dimension for nonzero size, or zero otherwise. The following code shows how dimensions of size 1
are scaled up or down to match the size of the corresponding dimension in other arguments.

R1 = rand(2,5,4,'gpuArray');
R2 = rand(2,1,4,3,'gpuArray');
R = bsxfun(@plus,R1,R2);
size(R)

  2     5     4     3

R1 = rand(2,2,0,4,'gpuArray');
R2 = rand(2,1,1,4,'gpuArray');
R = bsxfun(@plus,R1,R2);
size(R)

  2     2     0     4

• Because the operations supported by bsxfun are strictly element-wise, and each computation of
each element is performed independently of the others, certain restrictions are imposed:

• Input and output arrays cannot change shape or size.
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• Functions such as rand do not support size specifications. Arrays of random numbers have
independent streams for each element.

• Like bsxfun in MATLAB, matrix exponential power, multiplication, and division (^, *, /, \)
perform element-wise calculations only.

• Operations that change the size or shape of the input or output arrays (cat, reshape, and so on),
are not supported.

• Read-only indexing (subsref) and access to variables of the parent (outer) function workspace
from within nested functions is supported. You can index variables that exist in the function before
the evaluation on the GPU. Assignment or subsasgn indexing of these variables from within the
nested function is not supported. For an example of the supported usage, see “Stencil Operations
on a GPU”

• Anonymous functions do not have access to their parent function workspace.
• Overloading the supported functions is not allowed.
• The code cannot call scripts.
• There is no ans variable to hold unassigned computation results. Make sure to explicitly assign to

variables the results of all calculations.
• The following language features are not supported: persistent or global variables, parfor, spmd,

switch, and try/catch.
• P-code files cannot contain a call to bsxfun with gpuArray data.

See Also
arrayfun | gather | gpuArray | pagefun

Introduced in R2012a
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cancel
Cancel job or task

Syntax
cancel(t)
cancel(j)

Arguments
t Pending or running task to cancel.
j Pending, running, or queued job to cancel.

Description
cancel(t) stops the task object, t, that is currently in the pending or running state. The task’s
State property is set to finished, and no output arguments are returned. An error message stating
that the task was canceled is placed in the task object's ErrorMessage property, and the worker
session running the task is restarted.

cancel(j) stops the job object, j, that is pending, queued, or running. The job’s State property is
set to finished, and a cancel is executed on all tasks in the job that are not in the finished state.
A job object that has been canceled cannot be started again.

If the job is running from a MATLAB Job Scheduler, any worker sessions that are evaluating tasks
belonging to the job object are restarted.

If the specified job or task is already in the finished state, no action is taken.

Examples
Cancel a task. Note afterward the task’s State, ErrorIdentifier, and ErrorMessage properties.

c = parcluster();
job1 = createJob(c);
t = createTask(job1, @rand, 1, {3,3});
cancel(t)
t

 Task with properties: 

                   ID: 1
                State: finished
             Function: @rand
               Parent: Job 1
            StartTime: 
     Running Duration: 0 days 0h 0m 0s

      ErrorIdentifier: parallel:task:UserCancellation
         ErrorMessage: The task was cancelled by user "mylogin" on machine
                       "myhost.mydomain.com".
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See Also
delete | submit

Introduced before R2006a
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cancel
Cancel queued or running future

Syntax
cancel(F)

Description
cancel(F) stops the queued and running futures contained in F. No action is taken for finished
futures. Each element of F that is not already in state 'finished' has its State property set to
'finished', and its Error property is set to contain an MException indicating that execution was
cancelled.

Examples
Run a function several times until a satisfactory result is found. In this case, the array of futures F is
cancelled when a result is greater than 0.95.

N = 100;
for idx = N:-1:1
    F(idx) = parfeval(@rand,1); % Create a random scalar
end
result = NaN; % No result yet.
for idx = 1:N
    [~, thisResult] = fetchNext(F);
    if thisResult > 0.95
        result = thisResult;
        % Have all the results needed, so break
        break;
    end
end
% With required result, cancel any remaining futures
cancel(F)
result

See Also
afterAll | afterEach | fetchNext | fetchOutputs | isequal | parfeval | parfevalOnAll

Introduced in R2013b
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changePassword
Prompt user to change MATLAB Job Scheduler password

Syntax
changePassword(mjs)
changePassword(mjs,username)

Arguments
mjs MATLAB Job Scheduler cluster object on which password is changing
username Character vector identifying the user whose password is changing

Description
changePassword(mjs) prompts you to change your password as the current user on the MATLAB
Job Scheduler cluster represented by cluster object mjs. (Use the parcluster function to create a
cluster object.) In the dialog box that opens, you must enter your current password as well as the new
password.

changePassword(mjs,username) prompts you as the MATLAB Job Scheduler cluster admin user
to change the password for another specified user. In the dialog box that opens, you must enter the
cluster admin password in addition to the user’s new password. This allows the cluster admin to
reset a password for a user who is not available or has forgotten the password. (Note: The cluster
admin account was created when the MATLAB Job Scheduler cluster was started with a security level
of 1, 2, or 3.)

Examples
Change Password with a Cluster Profile

Change your password for the MATLAB Job Scheduler cluster identified by an MATLAB Job Scheduler
cluster profile called MyMjsProfile.

mjs = parcluster('MyMjsProfile');
changePassword(mjs)

Change Password on a Parallel Pool

Change your password for the MATLAB Job Scheduler cluster on which the parallel pool is running.

p = gcp;
mjs = p.Cluster;
changePassword(mjs)

Change Password of Another User

Change the password for another user named john. The admin user can access the MATLAB Job
Scheduler from a different session of MATLAB to do this, or change the Username property of the
cluster object within john’s MATLAB client session.
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mjs = parcluster('MyMjsProfile');
mjs.Username = 'admin'     % Generates prompt for admin user password.
changePassword(mjs,'john') % Generates prompt for both passwords.

At this point, the admin user might want to set the session user back to john.

mjs.Username = 'john'  % Prompted again for password.

See Also
logout | parcluster | startjobmanager

Topics
“Set MATLAB Job Scheduler Cluster Security” (MATLAB Parallel Server)

Introduced in R2010b
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classUnderlying
Class of elements within gpuArray or distributed array

Syntax
C = classUnderlying(D)

Description
C = classUnderlying(D) returns the name of the class of the elements contained within the
gpuArray or distributed array D. Similar to the MATLAB class function, this returns a character
vector indicating the class of the data.

Examples
Examine the class of the elements of a gpuArray.

N  = 1000;
G8 = ones(1,N,'uint8','gpuArray');
G1 = NaN(1,N,'single','gpuArray');
c8 = classUnderlying(G8)
c1 = classUnderlying(G1)

c8 =

uint8

c1 =

single

Examine the class of the elements of a distributed array.

N  = 1000;
D8 = ones(1,N,'uint8','distributed');
D1 = NaN(1,N,'single','distributed');
c8 = classUnderlying(D8)
c1 = classUnderlying(D1)

c8 =

uint8

c1 =

single

See Also
codistributed | distributed | gpuArray
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Introduced in R2013b
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clear
Remove objects from MATLAB workspace

Syntax
clear obj

Arguments
obj An object or an array of objects.

Description
clear obj removes obj from the MATLAB workspace.

Note Use parfevalOnAll instead of parfor or spmd if you want to use clear. This preserves
workspace “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-50.

Examples
This example creates two job objects on the MATLAB Job Scheduler jm. The variables for these job
objects in the MATLAB workspace are job1 and job2. job1 is copied to a new variable, job1copy;
then job1 and job2 are cleared from the MATLAB workspace. The job objects are then restored to
the workspace from the job object's Jobs property as j1 and j2, and the first job in the MATLAB Job
Scheduler is shown to be identical to job1copy, while the second job is not.

c = parcluster();
delete(c.Jobs) % Assure there are no jobs
job1 = createJob(c);
job2 = createJob(c);
job1copy = job1;
clear job1 job2;
j1 = c.Jobs(1);
j2 = c.Jobs(2);
isequal (job1copy,j1)

ans =
     1

isequal (job1copy,j2)

ans =
     0

Tips
If obj references an object in the cluster, it is cleared from the workspace, but it remains in the
cluster. You can restore obj to the workspace with the parcluster, findJob, or findTask
function; or with the Jobs or Tasks property.

 clear

10-45



See Also
createJob | createTask | findJob | findTask | parcluster

Introduced before R2006a
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codistributed
Create codistributed array from replicated local data

Syntax
C = codistributed(X)
C = codistributed(X,codist)
C = codistributed(X,lab,codist)
C = codistributed(C1,codist)

Description
C = codistributed(X) distributes a replicated array X using the default codistributor, creating a
codistributed array C as a result. X must be a replicated array, that is, it must have the same value on
all workers. size(C) is the same as size(X).

C = codistributed(X,codist) distributes a replicated array X using the distribution scheme
defined by codistributor codist. X must be a replicated array, namely it must have the same value on
all workers. size(C) is the same as size(X). For information on constructing codistributor objects,
see the reference pages for codistributor1d and codistributor2dbc.

C = codistributed(X,lab,codist) distributes a local array X that resides on the worker
identified by lab, using the codistributor codist. Local array X must be defined on all workers, but
only the value from lab is used to construct C. size(C) is the same as size(X).

C = codistributed(C1,codist) accepts an array C1 that is already codistributed, and
redistributes it into C according to the distribution scheme defined by the codistributor codist. This
is the same as calling C = redistribute(C1,codist). If the existing distribution scheme for C1 is
the same as that specified in codist, then the result C is the same as the input C1.

Examples
Create a 1000-by-1000 codistributed array C1 using the default distribution scheme.

spmd
    N = 1000;
    X = magic(N);          % Replicated on every worker
    C1 = codistributed(X); % Partitioned among the workers
end

Create a 1000-by-1000 codistributed array C2, distributed by rows (over its first dimension).

spmd
    N = 1000;
    X = magic(N);
    C2 = codistributed(X,codistributor1d(1));
end

Tips
gather essentially performs the inverse of codistributed.
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See Also
“What Is a Datastore?” (MATLAB) | codistributor1d | codistributor2dbc | distributed |
gather | getLocalPart | globalIndices | redistribute | subsasgn | subsref
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codistributed.build
Create codistributed array from distributed data

Syntax
D = codistributed.build(L,codist)
D = codistributed.build(L,codist,'noCommunication')

Description
D = codistributed.build(L,codist) forms a codistributed array with getLocalPart(D) =
L. The codistributed array D is created as if you had combined all copies of the local array L. The
distribution scheme is specified by codist. Global error checking ensures that the local parts
conform with the specified distribution scheme. For information on constructing codistributor objects,
see the reference pages for codistributor1d and codistributor2dbc.

D = codistributed.build(L,codist,'noCommunication') builds a codistributed array,
without performing any interworker communications for error checking.

codist must be complete, which you can check by calling codist.isComplete(). The
requirements on the size and structure of the local part L depend on the class of codist. For the 1-D
and 2-D block-cyclic codistributors, L must have the same class and sparsity on all workers.
Furthermore, the local part L must represent the region described by the globalIndices method
on codist.

Examples
Create a codistributed array of size 1001-by-1001 such that column ii contains the value ii.

spmd
    N = 1001;
    globalSize = [N,N];
    % Distribute the matrix over the second dimension (columns),
    % and let the codistributor derive the partition from the 
    % global size.
    codistr = codistributor1d(2, ...
                 codistributor1d.unsetPartition,globalSize)
 
    % On 4 workers, codistr.Partition equals [251,250,250,250].
    % Allocate storage for the local part.
    localSize = [N, codistr.Partition(labindex)];
    L = zeros(localSize);
    
    % Use globalIndices to map the indices of the columns 
    % of the local part into the global column indices.
    globalInd = codistr.globalIndices(2); 
    % On 4 workers, globalInd has the values:
    % 1:251    on worker 1
    % 252:501  on worker 2
    % 502:751  on worker 3
    % 752:1001 on worker 4
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    % Initialize the columns of the local part to 
    % the correct value.
    for localCol = 1:length(globalInd)
        globalCol = globalInd(localCol);
        L(:,localCol) = globalCol;
    end
    D = codistributed.build(L,codistr)
end

See Also
codistributor1d | codistributor2dbc | gather | getLocalPart | globalIndices |
redistribute | subsasgn | subsref

Introduced in R2009b
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codistributed.cell
Create codistributed cell array

Syntax
C = codistributed.cell(n)
C = codistributed.cell(m,n,p,...)
C = codistributed.cell([m,n,p,...])
C = cell(n,codist)
C = cell(m,n,p,...,codist)
C = cell([m,n,p,...],codist)

Description
C = codistributed.cell(n) creates an n-by-n codistributed array of underlying class cell,
distributing along columns.

C = codistributed.cell(m,n,p,...) or C = codistributed.cell([m,n,p,...]) creates
an m-by-n-by-p-by-... codistributed array of underlying class cell, using a default scheme of
distributing along the last nonsingleton dimension.

Optional arguments to codistributed.cell must be specified after the required arguments, and in
the following order:

• codist — A codistributor object specifying the distribution scheme of the resulting array. If
omitted, the array is distributed using the default distribution scheme. For information on
constructing codistributor objects, see the reference pages for codistributor1d and
codistributor2dbc.

• 'noCommunication' — Specifies that no communication is to be performed when constructing
the array, skipping some error checking steps.

C = cell(n,codist) is the same as C = codistributed.cell(n, codist). You can also use
the 'noCommunication' object with this syntax. To use the default distribution scheme, specify a
codistributor constructor without arguments. For example:

spmd
    C = cell(8,codistributor1d());
end

C = cell(m,n,p,...,codist) and C = cell([m,n,p,...],codist) are the same as C =
codistributed.cell(m,n,p,...) and C = codistributed.cell([m,n,p,...]),
respectively. You can also use the optional 'noCommunication' argument with this syntax.

Examples
With four workers,
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spmd(4)
    C = codistributed.cell(1000);
end

creates a 1000-by-1000 distributed cell array C, distributed by its second dimension (columns). Each
worker contains a 1000-by-250 local piece of C.

spmd(4)
    codist = codistributor1d(2, 1:numlabs);
    C = cell(10, 10, codist);
end

creates a 10-by-10 codistributed cell array C, distributed by its columns. Each worker contains a 10-
by-labindex local piece of C.

See Also
cell | distributed.cell

Introduced in R2009b
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codistributed.colon
Distributed colon operation

Syntax
codistributed.colon(a,d,b)
codistributed.colon(a,b)
codistributed.colon( ___ ,codist)
codistributed.colon( ___ ,'noCommunication')
codistributed.colon( ___ ,codist,'noCommunication')

Description
codistributed.colon(a,d,b) partitions the vector a:d:b into numlabs contiguous subvectors
of equal, or nearly equal length, and creates a codistributed array whose local portion on each worker
is the labindex-th subvector.

codistributed.colon(a,b) uses d = 1.

Optional arguments to codistributed.colon must be specified after the required arguments, and
in the following order:

codistributed.colon( ___ ,codist) uses the codistributor object codist to specify the
distribution scheme of the resulting vector. If omitted, the result is distributed using the default
distribution scheme. For information on constructing codistributor objects, see the reference pages
for codistributor1d and codistributor2dbc.

codistributed.colon( ___ ,'noCommunication') or codistributed.colon( ___
,codist,'noCommunication') specifies that no communication is to be performed when
constructing the vector, skipping some error checking steps.

Examples
Partition the vector 1:10 into four subvectors among four workers.

spmd(4); C = codistributed.colon(1,10), end

Lab 1: 
  This worker stores C(1:3).
          LocalPart: [1 2 3]
      Codistributor: [1x1 codistributor1d]
Lab 2: 
  This worker stores C(4:6).
          LocalPart: [4 5 6]
      Codistributor: [1x1 codistributor1d]
Lab 3: 
  This worker stores C(7:8).
          LocalPart: [7 8]
      Codistributor: [1x1 codistributor1d]
Lab 4: 
  This worker stores C(9:10).
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          LocalPart: [9 10]
      Codistributor: [1x1 codistributor1d]

See Also
codistributor1d | codistributor2dbc | colon | for

Introduced in R2009b
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codistributed.spalloc
Allocate space for sparse codistributed matrix

Syntax
SD = codistributed.spalloc(M,N,nzmax)
SD = spalloc(M,N,nzmax,codist)

Description
SD = codistributed.spalloc(M,N,nzmax) creates an M-by-N all-zero sparse codistributed
matrix with room to hold nzmax nonzeros.

Optional arguments to codistributed.spalloc must be specified after the required arguments,
and in the following order:

• codist — A codistributor object specifying the distribution scheme of the resulting array. If
omitted, the array is distributed using the default distribution scheme. The allocated space for
nonzero elements is consistent with the distribution of the matrix among the workers according to
the Partition of the codistributor.

• 'noCommunication' — Specifies that no communication is to be performed when constructing
the array, skipping some error checking steps. You can also use this argument with SD =
spalloc(M, N, nzmax, codistr).

SD = spalloc(M,N,nzmax,codist) is the same as SD =
codistributed.spalloc(M,N,nzmax,codist). You can also use the optional arguments with this
syntax.

Examples
Allocate space for a 1000-by-1000 sparse codistributed matrix with room for up to 2000 nonzero
elements. Use the default codistributor. Define several elements of the matrix.

spmd  % codistributed array created inside spmd statement
    N = 1000;
    SD = codistributed.spalloc(N, N, 2*N);
    for ii=1:N-1
      SD(ii,ii:ii+1) = [ii ii];
    end
end

See Also
distributed.spalloc | spalloc | sparse

Introduced in R2009b
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codistributed.speye
Create codistributed sparse identity matrix

Syntax
CS = codistributed.speye(n)
CS = codistributed.speye(m,n)
CS = codistributed.speye([m,n])
CS = speye(n,codist)
CS = speye(m,n,codist)
CS = speye([m,n],codist)

Description
CS = codistributed.speye(n) creates an n-by-n sparse codistributed array of underlying class
double.

CS = codistributed.speye(m,n) or CS = codistributed.speye([m,n]) creates an m-by-n
sparse codistributed array of underlying class double.

Optional arguments to codistributed.speye must be specified after the required arguments, and
in the following order:

• codist — A codistributor object specifying the distribution scheme of the resulting array. If
omitted, the array is distributed using the default distribution scheme. For information on
constructing codistributor objects, see the reference pages for codistributor1d and
codistributor2dbc.

• 'noCommunication' — Specifies that no interworker communication is to be performed when
constructing the array, skipping some error checking steps.

CS = speye(n,codist) is the same as CS = codistributed.speye(n,codist). You can also
use the optional arguments with this syntax. To use the default distribution scheme, specify a
codistributor constructor without arguments. For example:

spmd
    CS = codistributed.speye(8,codistributor1d());
end

CS = speye(m,n,codist) and CS = speye([m,n],codist) are the same as CS =
codistributed.speye(m,n) and CS = codistributed.speye([m,n]), respectively. You can
also use the optional arguments with this syntax.

Note To create a sparse codistributed array of underlying class logical, first create an array of
underlying class double and then cast it using the logical function:

CLS = logical(speye(m,n,codistributor1d()))
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Examples
With four workers,

spmd(4)
    CS = speye(1000,codistributor())
end

creates a 1000-by-1000 sparse codistributed double array CS, distributed by its second dimension
(columns). Each worker contains a 1000-by-250 local piece of CS.

spmd(4)
    codist = codistributor1d(2,1:numlabs);
    CS = speye(10,10,codist);
end

creates a 10-by-10 sparse codistributed double array CS, distributed by its columns. Each worker
contains a 10-by-labindex local piece of CS.

See Also
distributed.speye | sparse | speye

Introduced in R2009b
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codistributed.sprand
Create codistributed sparse array of uniformly distributed pseudo-random values

Syntax
CS = codistributed.sprand(m,n,density)
CS = sprand(n,codist)

Description
CS = codistributed.sprand(m,n,density) creates an m-by-n sparse codistributed array with
approximately density*m*n uniformly distributed nonzero double entries.

Optional arguments to codistributed.sprand must be specified after the required arguments,
and in the following order:

• codist — A codistributor object specifying the distribution scheme of the resulting array. If
omitted, the array is distributed using the default distribution scheme. For information on
constructing codistributor objects, see the reference pages for codistributor1d and
codistributor2dbc.

• 'noCommunication' — Specifies that no interworker communication is to be performed when
constructing the array, skipping some error checking steps.

CS = sprand(n,codist) is the same as CS = codistributed.sprand(n, codist). You can
also use the optional arguments with this syntax. To use the default distribution scheme, specify a
codistributor constructor without arguments. For example:

spmd
    CS = codistributed.sprand(8,8,0.2,codistributor1d());
end

Examples
With four workers,

spmd(4)
    CS = codistributed.sprand(1000,1000,0.001);
end

creates a 1000-by-1000 sparse codistributed double array CS with approximately 1000 nonzeros. CS
is distributed by its second dimension (columns), and each worker contains a 1000-by-250 local piece
of CS.

spmd(4)
    codist = codistributor1d(2,1:numlabs);
    CS = sprand(10,10,0.1,codist);
end

creates a 10-by-10 codistributed double array CS with approximately 10 nonzeros. CS is distributed
by its columns, and each worker contains a 10-by-labindex local piece of CS.
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Tips
When you use sprand on the workers in the parallel pool, or in an independent or communicating
job, each worker sets its random generator seed to a value that depends only on the labindex or
task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job,
you get the same random data.

See Also
distributed.sprandn | rand | sprand

Introduced in R2009b
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codistributed.sprandn
Create codistributed sparse array of uniformly distributed pseudo-random values

Syntax
CS = codistributed.sprandn(m,n,density)
CS = sprandn(n,codist)

Description
CS = codistributed.sprandn(m,n,density) creates an m-by-n sparse codistributed array with
approximately density*m*n normally distributed nonzero double entries.

Optional arguments to codistributed.sprandn must be specified after the required arguments,
and in the following order:

• codist — A codistributor object specifying the distribution scheme of the resulting array. If
omitted, the array is distributed using the default distribution scheme. For information on
constructing codistributor objects, see the reference pages for codistributor1d and
codistributor2dbc.

• 'noCommunication' — Specifies that no interworker communication is to be performed when
constructing the array, skipping some error checking steps.

CS = sprandn(n,codist) is the same as CS = codistributed.sprandn(n, codist). You can
also use the optional arguments with this syntax. To use the default distribution scheme, specify a
codistributor constructor without arguments. For example:

spmd
    CS = codistributed.sprandn(8,8,0.2,codistributor1d());
end

Examples
With four workers,

spmd(4)
    CS = codistributed.sprandn(1000,1000,0.001);
end

creates a 1000-by-1000 sparse codistributed double array CS with approximately 1000 nonzeros. CS
is distributed by its second dimension (columns), and each worker contains a 1000-by-250 local piece
of CS.

spmd(4)
    codist = codistributor1d(2,1:numlabs);
    CS = sprandn(10,10,0.1,codist);
end

creates a 10-by-10 codistributed double array CS with approximately 10 nonzeros. CS is distributed
by its columns, and each worker contains a 10-by-labindex local piece of CS.
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Tips
When you use sprandn on the workers in the parallel pool, or in an independent or communicating
job, each worker sets its random generator seed to a value that depends only on the labindex or
task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job,
you get the same random data.

See Also
codistributed.speye | codistributed.sprand | distributed.sprandn | rand | randn |
sparse | sprandn

Introduced in R2009b
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codistributor
Create codistributor object for codistributed arrays

Syntax
codist = codistributor()
codist = codistributor('1d')
codist = codistributor('1d',dim)
codist = codistributor('1d',dim,part)
codist = codistributor('2dbc')
codist = codistributor('2dbc',lbgrid)
codist = codistributor('2dbc',lbgrid,blksize)

Description
There are two schemes for distributing arrays. The scheme denoted by the character vector '1d'
distributes an array along a single specified subscript, the distribution dimension, in a noncyclic,
partitioned manner. The scheme denoted by '2dbc', employed by the parallel matrix computation
software ScaLAPACK, applies only to two-dimensional arrays, and varies both subscripts over a
rectangular computational grid of labs (workers) in a blocked, cyclic manner.

codist = codistributor(), with no arguments, returns a default codistributor object with zero-
valued or empty parameters, which can then be used as an argument to other functions to indicate
that the function is to create a codistributed array if possible with default distribution. For example,

Z = zeros(..., codistributor())
R = randn(..., codistributor())

codist = codistributor('1d') is the same as codist = codistributor().

codist = codistributor('1d',dim) also forms a codistributor object with codist.Dimension
= dim and default partition.

codist = codistributor('1d',dim,part) also forms a codistributor object with
codist.Dimension = dim and codist.Partition = part.

codist = codistributor('2dbc') forms a 2-D block-cyclic codistributor object. For more
information about '2dbc' distribution, see “2-Dimensional Distribution” on page 4-12.

codist = codistributor('2dbc',lbgrid) forms a 2-D block-cyclic codistributor object with
the lab grid defined by lbgrid and with default block size.

codist = codistributor('2dbc',lbgrid,blksize) forms a 2-D block-cyclic codistributor
object with the lab grid defined by lbgrid and with a block size defined by blksize.

codist = getCodistributor(D) returns the codistributor object of codistributed array D.
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Examples
On four workers, create a 3-dimensional, 2-by-6-by-4 array with distribution along the second
dimension, and partition scheme [1 2 1 2]. In other words, worker 1 contains a 2-by-1-by-4
segment, worker 2 a 2-by-2-by-4 segment, etc.

spmd
    dim = 2; % distribution dimension
    codist = codistributor('1d',dim,[1 2 1 2],[2 6 4]);
    if mod(labindex,2)
        L = rand(2,1,4);
    else
        L = rand(2,2,4);
    end
    A = codistributed.build(L,codist)
end
A

On four workers, create a 20-by-5 codistributed array A, distributed by rows (over its first dimension)
with a uniform partition scheme.

spmd
    dim = 1; % distribution dimension
    partn = codistributor1d.defaultPartition(20);
    codist = codistributor('1d',dim,partn,[20 5]);
    L = magic(5) + labindex;
    A = codistributed.build(L,codist)
end
A

See Also
codistributed | codistributor1d | codistributor2dbc | getCodistributor |
getLocalPart | redistribute

Introduced in R2008b
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codistributor1d
Create 1-D codistributor object for codistributed arrays

Syntax
codist = codistributor1d()
codist = codistributor1d(dim)
codist = codistributor1d(dim,part)
codist = codistributor1d(dim,part,gsize)

Description
The 1-D codistributor distributes arrays along a single, specified distribution dimension, in a
noncyclic, partitioned manner.

codist = codistributor1d() forms a codistributor1d object using default dimension and
partition. The default dimension is the last nonsingleton dimension of the codistributed array. The
default partition distributes the array along the default dimension as evenly as possible.

codist = codistributor1d(dim) forms a 1-D codistributor object for distribution along the
specified dimension: 1 distributes along rows, 2 along columns, etc.

codist = codistributor1d(dim,part) forms a 1-D codistributor object for distribution
according to the partition vector part. For example C1 = codistributor1d(1,[1,2,3,4])
describes the distribution scheme for an array of ten rows to be codistributed by its first dimension
(rows), to four workers, with 1 row to the first, 2 rows to the second, etc.

The resulting codistributor of any of the above syntax is incomplete because its global size is not
specified. A codistributor constructed in this manner can be used as an argument to other functions
as a template codistributor when creating codistributed arrays.

codist = codistributor1d(dim,part,gsize) forms a codistributor object with distribution
dimension dim, distribution partition part, and global size of its codistributed arrays gsize. The
resulting codistributor object is complete and can be used to build a codistributed array from its local
parts with codistributed.build. To use a default dimension, specify
codistributor1d.unsetDimension for that argument; the distribution dimension is derived from
gsize and is set to the last non-singleton dimension. Similarly, to use a default partition, specify
codistributor1d.unsetPartition for that argument; the partition is then derived from the
default for that global size and distribution dimension.

The local part on worker labidx of a codistributed array using such a codistributor is of size gsize
in all dimensions except dim, where the size is part(labidx). The local part has the same class and
attributes as the overall codistributed array. Conceptually, the overall global array could be
reconstructed by concatenating the various local parts along dimension dim.

Examples
Use a codistributor1d object to create an N-by-N matrix of ones, distributed by rows.

N = 1000;
spmd
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    codistr = codistributor1d(1); % 1st dimension (rows)
    C = ones(N,codistr);
end

Use a fully specified codistributor1d object to create a trivial N-by-N codistributed matrix from its
local parts. Then visualize which elements are stored on worker 2.

N = 1000;
spmd
    codistr = codistributor1d( ...
                    codistributor1d.unsetDimension, ...
                    codistributor1d.unsetPartition, ...
                    [N,N]);
    myLocalSize = [N,N]; % start with full size on each lab
    % then set myLocalSize to default part of whole array:
    myLocalSize(codistr.Dimension) = codistr.Partition(labindex);
    myLocalPart = labindex*ones(myLocalSize); % arbitrary values
    D = codistributed.build(myLocalPart,codistr);
end
spy(D==2);

See Also
codistributed | codistributor2dbc | redistribute
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codistributor1d.defaultPartition
Default partition for codistributed array

Syntax
P = codistributor1d.defaultPartition(n)

Description
P = codistributor1d.defaultPartition(n) is a vector with sum(P) = n and length(P) =
numlabs. The first rem(n,numlabs) elements of P are equal to ceil(n/numlabs) and the
remaining elements are equal to floor(n/numlabs). This function is the basis for the default
distribution of codistributed arrays.

Examples
If numlabs = 4, the following code returns the vector [3 3 2 2] on all workers:

spmd
    P = codistributor1d.defaultPartition(10)
end

See Also
codistributed | codistributed.colon | codistributor1d

Introduced in R2009b
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codistributor2dbc
Create 2-D block-cyclic codistributor object for codistributed arrays

Syntax
codist = codistributor2dbc()
codist = codistributor2dbc(lbgrid)
codist = codistributor2dbc(lbgrid,blksize)
codist = codistributor2dbc(lbgrid,blksize,orient)
codist = codistributor2dbc(lbgrid,blksize,orient,gsize)

Description
The 2-D block-cyclic codistributor can be used only for two-dimensional arrays. It distributes arrays
along two subscripts over a rectangular computational grid of labs (workers) in a block-cyclic manner.
For a complete description of 2-D block-cyclic distribution, default parameters, and the relationship
between block size and lab grid, see “2-Dimensional Distribution” on page 4-12. The 2-D block-cyclic
codistributor is used by the ScaLAPACK parallel matrix computation software library.

codist = codistributor2dbc() forms a 2-D block-cyclic codistributor2dbc codistributor object
using default lab grid and block size.

codist = codistributor2dbc(lbgrid) forms a 2-D block-cyclic codistributor object using the
specified lab grid and default block size. lbgrid must be a two-element vector defining the rows and
columns of the lab grid, and the rows times columns must equal the number of workers for the
codistributed array.

codist = codistributor2dbc(lbgrid,blksize) forms a 2-D block-cyclic codistributor object
using the specified lab grid and block size.

codist = codistributor2dbc(lbgrid,blksize,orient) allows an orientation argument.
Valid values for the orientation argument are 'row' for row orientation, and 'col' for column
orientation of the lab grid. The default is row orientation.

The resulting codistributor of any of the above syntax is incomplete because its global size is not
specified. A codistributor constructed this way can be used as an argument to other functions as a
template codistributor when creating codistributed arrays.

codist = codistributor2dbc(lbgrid,blksize,orient,gsize) forms a codistributor object
that distributes arrays with the global size gsize. The resulting codistributor object is complete and
can therefore be used to build a codistributed array from its local parts with
codistributed.build. To use the default values for lab grid, block size, and orientation, specify
them using codistributor2dbc.defaultLabGrid, codistributor2dbc.defaultBlockSize,
and codistributor2dbc.defaultOrientation, respectively.

Examples
Use a codistributor2dbc object to create an N-by-N matrix of ones.

N = 1000;
spmd
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    codistr = codistributor2dbc();  
    D = ones(N,codistr);
end    

Use a fully specified codistributor2dbc object to create a trivial N-by-N codistributed matrix from its
local parts. Then visualize which elements are stored on worker 2.

N = 1000;
spmd
    codistr = codistributor2dbc(...
                 codistributor2dbc.defaultLabGrid, ...
                 codistributor2dbc.defaultBlockSize, ...
                 'row',[N,N]);
    myLocalSize = [length(codistr.globalIndices(1)), ...
                   length(codistr.globalIndices(2))]; 
    myLocalPart = labindex*ones(myLocalSize);
    D = codistributed.build(myLocalPart,codistr);
end
spy(D==2);

See Also
codistributed | codistributor1d | getLocalPart | redistribute

10 Functions

10-68



codistributor2dbc.defaultLabGrid
Default computational grid for 2-D block-cyclic distributed arrays

Syntax
grid = codistributor2dbc.defaultLabGrid()

Description
grid = codistributor2dbc.defaultLabGrid() returns a vector, grid = [nrow ncol],
defining a computational grid of nrow-by-ncol workers in the open parallel pool, such that numlabs
= nrow x ncol.

The grid defined by codistributor2dbc.defaultLabGrid is as close to a square as possible. The
following rules define nrow and ncol:

• If numlabs is a perfect square, nrow = ncol = sqrt(numlabs).
• If numlabs is an odd power of 2, then nrow = ncol/2 = sqrt(numlabs/2).
• nrow <= ncol.
• If numlabs is a prime, nrow = 1, ncol = numlabs.
• nrow is the greatest integer less than or equal to sqrt(numlabs) for which ncol = numlabs/

nrow is also an integer.

Examples
View the computational grid layout of the default distribution scheme for the open parallel pool.

spmd
    grid = codistributor2dbc.defaultLabGrid
end

See Also
codistributed | codistributor2dbc | numlabs
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Composite
Create Composite object

Syntax
C = Composite()
C = Composite(nlabs)

Description
C = Composite() creates a Composite object on the client using workers from the parallel pool.
The actual number of workers referenced by this Composite object depends on the size of the pool
and any existing Composite objects. Generally, you should construct Composite objects outside any
spmd statement.

C = Composite(nlabs) creates a Composite object on the parallel pool set that matches the
specified constraint. nlabs must be a vector of length 1 or 2, containing integers or Inf. If nlabs is
of length 1, it specifies the exact number of workers to use. If nlabs is of size 2, it specifies the
minimum and maximum number of workers to use. The actual number of workers used is the
maximum number of workers compatible with the size of the parallel pool, and with other existing
Composite objects. An error is thrown if the constraints on the number of workers cannot be met.

A Composite object has one entry for each lab; initially each entry contains no data. Use either
indexing or an spmd block to define values for the entries.

Examples
The following examples all use a local parallel pool of four workers, opened with the statement:

p = parpool('local',4);

This example shows how to create a Composite object with no defined elements, then assign values
using a for-loop in the client.

c = Composite();  % One element per worker in the pool
for w = 1:length(c)
    c{w} = 0;    % Value stored on each worker
end

This example shows how to assign Composite elements in an spmd block.

c = Composite();
spmd
    c = 0;    % Value stored on each worker
end

This example shows how to assign the elements of a Composite with a value from each worker.

c = Composite();
spmd
    c = labindex;
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end
c{:}

     1

     2

     3

     4

This example shows how to use a distributed array vector to set the values of a Composite.

d = distributed([3 1 4 2]); % One integer per worker
spmd
    c = getLocalPart(d);    % Unique value on each worker
end
c{:}

     3

     1

     4

     2

Tips
• A Composite is created on the workers of the existing parallel pool. If no pool exists, Composite

starts a new parallel pool, unless the automatic starting of pools is disabled in your parallel
preferences. If there is no parallel pool and Composite cannot start one, the result is a 1-by-1
Composite in the client workspace.

See Also
parallel.pool.Constant | parpool | spmd
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createCommunicatingJob
Create communicating job on cluster

Syntax
job = createCommunicatingJob(cluster)
job = createCommunicatingJob(...,'p1',v1,'p2',v2,...)
job = createCommunicatingJob(...,'Type','pool',...)
job = createCommunicatingJob(...,'Type','spmd',...)
job = createCommunicatingJob(...,'Profile','profileName',...)

Description
job = createCommunicatingJob(cluster) creates a communicating job object for the identified
cluster.

job = createCommunicatingJob(...,'p1',v1,'p2',v2,...) creates a communicating job
object with the specified property values. For a listing of the valid properties of the created object,
see the parallel.Job object reference page. The property name must be a character vector, with
the value being the appropriate type for that property. In most cases, the values specified in these
property-value pairs override the values in the profile. But when you specify AttachedFiles or
AdditionalPaths at the time of creating a job, the settings are combined with those specified in
the applicable profile. If an invalid property name or property value is specified, the object will not be
created.

job = createCommunicatingJob(...,'Type','pool',...) creates a communicating job of
type 'pool'. This is the default if 'Type' is not specified. A 'pool' job runs the specified task
function with a parallel pool available to run the body of parfor loops or spmd blocks. Note that only
one worker runs the task function, and the rest of the workers in the cluster form the parallel pool.
So on a cluster of N workers for a 'pool' type job, only N-1 workers form the actual pool that
performs the spmd and parfor code found within the task function.

job = createCommunicatingJob(...,'Type','spmd',...) creates a communicating job of
type 'spmd', where the specified task function runs simultaneously on all workers, and lab*
functions can be used for communication between workers.

job = createCommunicatingJob(...,'Profile','profileName',...) creates a
communicating job object with the property values specified in the profile 'profileName'. If no
profile is specified and the cluster object has a value specified in its 'Profile' property, the
cluster’s profile is automatically applied.

Examples
Example 10.1. Pool Type Communicating Job

Consider the function 'myFunction' which uses a parfor loop:

function result = myFunction(N)
    result = 0;
    parfor ii=1:N
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        result = result + max(eig(rand(ii)));
    end
end

Create a communicating job object to evaluate myFunction on the default cluster:

myCluster = parcluster;
j = createCommunicatingJob(myCluster,'Type','pool'); 

Add the task to the job, supplying an input argument:

createTask(j, @myFunction, 1, {100});

Set the number of workers required for parallel execution:

j.NumWorkersRange = [5 10];

Run the job.

submit(j);

Wait for the job to finish and retrieve its results:

wait(j)
out = fetchOutputs(j)

Delete the job from the cluster.

delete(j);

See Also
createJob | createTask | findJob | parcluster | recreate | submit

Introduced in R2012a
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createJob
Create independent job on cluster

Syntax
obj = createJob(cluster)
obj = createJob(...,'p1',v1,'p2',v2,...)
job = createJob(...,'Profile','profileName',...)

Arguments
obj The job object.
cluster The cluster object created by parcluster.
p1, p2 Object properties configured at object creation.
v1, v2 Initial values for corresponding object properties.

Description
obj = createJob(cluster) creates an independent job object for the identified cluster.

The job’s data is stored in the location specified by the cluster’s JobStorageLocation property.

obj = createJob(...,'p1',v1,'p2',v2,...) creates a job object with the specified property
values. For a listing of the valid properties of the created object, see the parallel.Job object
reference page. The property name must be a character vector, with the value being the appropriate
type for that property. In most cases, the values specified in these property-value pairs override the
values in the profile; but when you specify AttachedFiles or AdditionalPaths at the time of
creating a job, the settings are combined with those specified in the applicable profile. If an invalid
property name or property value is specified, the object will not be created.

job = createJob(...,'Profile','profileName',...) creates an independent job object
with the property values specified in the profile 'profileName'. If a profile is not specified and the
cluster has a value specified in its 'Profile' property, the cluster’s profile is automatically applied.
For details about defining and applying profiles, see “Discover Clusters and Use Cluster Profiles” on
page 5-11.

Examples
Example 10.2. Create and Run a Basic Job

Construct an independent job object using the default profile.

c = parcluster
j = createJob(c);

Add tasks to the job.
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for i = 1:10
    createTask(j,@rand,1,{10});
end

Run the job.

submit(j);

Wait for the job to finish running, and retrieve the job results.

wait(j);
out = fetchOutputs(j);

Display the random matrix returned from the third task.

disp(out{3});

Delete the job.

delete(j);

Example 10.3. Create a Job with Attached Files

Construct an independent job with attached files in addition to those specified in the default profile.

c = parcluster
j = createJob(c,'AttachedFiles',...
        {'myapp/folderA','myapp/folderB','myapp/file1.m'});

See Also
createCommunicatingJob | createTask | findJob | parcluster | recreate | submit

Introduced before R2006a
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createTask
Create new task in job

Syntax
t = createTask(j, F, N, {inputargs})
t = createTask(j, F, N, {C1,...,Cm})
t = createTask(..., 'p1',v1,'p2',v2,...)
t = createTask(...,'Profile', 'ProfileName',...)

Arguments
t Task object or vector of task objects.
j The job that the task object is created in.
F A handle to the function that is called when the task is evaluated,

or an array of function handles.
N The number of output arguments to be returned from execution of

the task function. This is a double or array of doubles.
{inputargs} A row cell array specifying the input arguments to be passed to

the function F. Each element in the cell array will be passed as a
separate input argument. If this is a cell array of cell arrays, a
task is created for each cell array.

{C1,...,Cm} Cell array of cell arrays defining input arguments to each of m
tasks.

p1, p2 Task object properties configured at object creation.
v1, v2 Initial values for corresponding task object properties.

Description
t = createTask(j, F, N, {inputargs}) creates a new task object in job j, and returns a
reference, t, to the added task object. This task evaluates the function specified by a function handle
or function name F, with the given input arguments {inputargs}, returning N output arguments.

t = createTask(j, F, N, {C1,...,Cm}) uses a cell array of m cell arrays to create m task
objects in job j, and returns a vector, t, of references to the new task objects. Each task evaluates
the function specified by a function handle or function name F. The cell array C1 provides the input
arguments to the first task, C2 to the second task, and so on, so that there is one task per cell array.
Each task returns N output arguments. If F is a cell array, each element of F specifies a function for
each task in the vector; it must have m elements. If N is an array of doubles, each element specifies
the number of output arguments for each task in the vector. Multidimensional matrices of inputs F, N
and {C1,...,Cm} are supported; if a cell array is used for F, or a double array for N, its dimensions
must match those of the input arguments cell array of cell arrays. The output t will be a vector with
the same number of elements as {C1,...,Cm}. Note that because a communicating job has only one
task, this form of vectorized task creation is not appropriate for such jobs.

t = createTask(..., 'p1',v1,'p2',v2,...) adds a task object with the specified property
values. For a listing of the valid properties of the created object, see the parallel.Task object
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reference page. The property name must be a character vector, with the value being the appropriate
type for that property. The values specified in these property-value pairs override the values in the
profile. If an invalid property name or property value is specified, the object will not be created.

t = createTask(...,'Profile', 'ProfileName',...) creates a task object with the
property values specified in the cluster profile ProfileName. For details about defining and applying
cluster profiles, see “Discover Clusters and Use Cluster Profiles” on page 5-11.

Examples
Example 10.4. Create a Job with One Task

Create a job object.

c = parcluster(); % Use default profile
j = createJob(c);

Add a task object which generates a 10-by-10 random matrix.

t = createTask(j, @rand, 1, {10,10});

Run the job.

submit(j);

Wait for the job to finish running, and get the output from the task evaluation.

wait(j);
taskoutput = fetchOutputs(j);

Show the 10-by-10 random matrix.

disp(taskoutput{1});

Example 10.5. Create a Job with Three Tasks

This example creates a job with three tasks, each of which generates a 10-by-10 random matrix.

c = parcluster(); % Use default profile
j = createJob(c);
t = createTask(j, @rand, 1, {{10,10} {10,10} {10,10}});

Example 10.6. Create a Task with Different Property Values

This example creates a task that captures the worker diary, regardless of the setting in the profile.

c = parcluster(); % Use default profile
j = createJob(c);
t = createTask(j,@rand,1,{10,10},'CaptureDiary',true);

See Also
createCommunicatingJob | createJob | findTask | recreate

Introduced before R2006a
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delete
Package: parallel

Remove job or task object from cluster and memory

Syntax
delete(obj)

Description
delete(obj) removes the job or task object, obj, from the local MATLAB session, and removes it
from the cluster’s JobStorageLocation. When the object is deleted, references to it become
invalid. Invalid objects should be removed from the workspace with the clear command. If multiple
references to an object exist in the workspace, deleting one reference to that object invalidates the
remaining references to it. These remaining references should be cleared from the workspace with
the clear command.

When you delete a job object, this also deletes all the task objects contained in that job. Any
references to those task objects will also be invalid, and you should clear them from the workspace.

If obj is an array of objects and one of the objects cannot be deleted, the other objects in the array
are deleted and a warning is returned.

Because its data is lost when you delete an object, delete should be used only after you have
retrieved all required output data from the effected object.

Examples
Create a job object using the default profile, then delete the job:

myCluster = parcluster;
j = createJob(myCluster,'Name','myjob');
t = createTask(j,@rand,1,{10});
delete(j);
clear j t

Delete all jobs on the cluster identified by the profile myProfile:

myCluster = parcluster('myProfile');
delete(myCluster.Jobs)

See Also
batch | createJob | createTask | findJob | findTask | wait

Introduced in R2012a
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delete
Package: parallel

Shut down parallel pool

Syntax
delete(poolobj)

Description
delete(poolobj) shuts down the parallel pool associated with the object poolobj, and destroys
the communicating job that comprises the pool. Subsequent parallel language features will
automatically start a new parallel pool, unless your parallel preferences disable this behavior.

References to the deleted pool object become invalid. Invalid objects should be removed from the
workspace with the clear command. If multiple references to an object exist in the workspace,
deleting one reference to that object invalidates the remaining references to it. These remaining
references should be cleared from the workspace with the clear command.

Examples

Shut Down Current Parallel Pool

To get the current parallel pool, use the gcp function.

poolobj = gcp('nocreate');

Shut down the current pool by using the delete function.

delete(poolobj);

Input Arguments
poolobj — Parallel pool
parallel.Pool

Parallel pool to shut down, specified as a parallel.Pool object. You can get the current parallel
pool with the gcp function.
Example: delete(gcp('nocreate'))
Data Types: parallel.Pool

See Also
gcp | parpool
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demote
Demote job in cluster queue

Syntax
demote(c,job)

Arguments
c Cluster object that contains the job.
job Job object demoted in the job queue.

Description
demote(c,job) demotes the job object job that is queued in the cluster c.

If job is not the last job in the queue, demote exchanges the position of job and the job that follows
it in the queue.

Examples
Create and submit multiple jobs to the MATLAB Job Scheduler identified by the default parallel
configuration:

c = parcluster();
pause(c) % Prevent submissions from running.

j1 = createJob(c,'Name','Job A');
j2 = createJob(c,'Name','Job B');
j3 = createJob(c,'Name','Job C');
submit(j1);submit(j2);submit(j3);

Demote one of the jobs by one position in the queue:

demote(c,j2)

Examine the new queue sequence:

[pjobs,qjobs,rjobs,fjobs] = findJob(c);
get(qjobs,'Name')

    'Job A'
    'Job C'
    'Job B'

Tips
After a call to demote or promote, there is no change in the order of job objects contained in the
Jobs property of the cluster object. To see the scheduled order of execution for jobs in the queue, use
the findJob function in the form [pending queued running finished] = findJob(c).
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See Also
createJob | findJob | promote | submit

Introduced before R2006a
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diary
Package: parallel

Display or save Command Window text of batch job

Syntax
diary(job)
diary(job, 'filename')

Arguments
job Job from which to view Command Window output text.
'filename' File to append with Command Window output text from batch job

Description
diary(job) displays the Command Window output from the batch job in the MATLAB Command
Window. The Command Window output will be captured only if the batch command included the
'CaptureDiary' argument with a value of true.

diary(job, 'filename') causes the Command Window output from the batch job to be appended
to the specified file.

The captured Command Window output includes only the output generated by execution of the task
function. Output is not captured from code that runs asynchronously from the task.

See Also
batch | diary | load

Introduced in R2008a
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distributed
Create distributed array from data in the client workspace or a datastore

Syntax
D = distributed(ds)
D = distributed(X)
D = distributed(C,dim)

Description
D = distributed(ds) creates a distributed array from a datastore ds. D is a distributed array
stored in parts on the workers of the open parallel pool.

To retrieve the distributed array elements from the pool back to an array in the MATLAB workspace,
use gather.

D = distributed(X) creates a distributed array from an array X.

Constructing a distributed array from local data this way is appropriate only if the MATLAB client can
store the entirety of X in its memory. To construct large distributed arrays, use one of the constructor
methods such as ones(___,'distributed'), zeros(___,'distributed'), etc. For a list, see
“Constructor” on page 9-13.

If the input argument is already a distributed array, the result is the same as the input.

D = distributed(C,dim) creates a distributed array from a Composite array C, with the entries of
C concatenated and distributed along the dimension dim. If you omit dim, then the first dimension is
the distribution dimension.

All entries of the Composite array must have the same class. Dimensions other than the distribution
dimension must match.

Examples
Create Distributed Arrays

Create a small array and distribute it.

Nsmall = 50;
D1 = distributed(magic(Nsmall));

Create a large distributed array directly, using a build method.

Nlarge = 1000;
D2 = rand(Nlarge,'distributed');

Retrieve elements of a distributed array, and note where the arrays are located by their Class.

D3 = gather(D2);
whos
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  Name           Size           Bytes  Class

  D1            50x50             733  distributed
  D2          1000x1000           733  distributed
  D3          1000x1000       8000000  double
  Nlarge         1x1                8  double
  Nsmall         1x1                8  double

Create a Distributed Array from a Datastore

This example shows how to create and load distributed arrays using datastore. You first create a
datastore using an example data set. This data set is too small to show equal partitioning of the data
over the workers. To simulate a large data set, artificially increase the size of the datastore using
repmat.

files = repmat({'airlinesmall.csv'}, 10, 1);
ds = tabularTextDatastore(files);

Select the example variables.

ds.SelectedVariableNames = {'DepTime','DepDelay'};
ds.TreatAsMissing = 'NA';

Create a distributed table by reading the datastore in parallel. Partition the datastore with one
partition per worker. Each worker then reads all data from the corresponding partition. The files must
be in a shared location accessible from the workers.

dt = distributed(ds);

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

Finally, display summary information about the distributed table.

summary(dt) 

Variables:

    DepTime: 1,235,230×1 double
        Values:

            min          1
            max       2505
            NaNs    23,510

    DepDelay: 1,235,230×1 double
        Values:

            min      -1036
            max       1438
            NaNs    23,510

Create a Distributed Array from a Composite Array

Start a parallel pool of workers and create a Composite array by using spmd.

p = parpool("local",4);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).
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spmd
C = rand(3,labindex-1);
end
C

 
C =
 
   Lab 1: class = double, size = [3  0]
   Lab 2: class = double, size = [3  1]
   Lab 3: class = double, size = [3  2]
   Lab 4: class = double, size = [3  3]
 

To create a distributed array out of the Composite array, use the distributed function. For this
example, distribute the entries along the second dimension.

d = distributed(C,2)

d =

    0.6383    0.9730    0.2934    0.3241    0.9401    0.1897
    0.5195    0.7104    0.1558    0.0078    0.3231    0.3685
    0.1398    0.3614    0.3421    0.9383    0.3569    0.5250

spmd
    d
end

Lab 1: 
  
  This worker does not store any elements of d.
  
Lab 2: 
  
  This worker stores d(:,1).
  
          LocalPart: [3x1 double]
      Codistributor: [1x1 codistributor1d]
  
Lab 3: 
  
  This worker stores d(:,2:3).
  
          LocalPart: [3x2 double]
      Codistributor: [1x1 codistributor1d]
  
Lab 4: 
  
  This worker stores d(:,4:6).
  
          LocalPart: [3x3 double]
      Codistributor: [1x1 codistributor1d]
  

When you are finished with the computations, delete the parallel pool.

delete(p);
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Tips
• A distributed array is created on the workers of the existing parallel pool. If no pool exists,

distributed starts a new parallel pool unless the automatic starting of pools is disabled in your
parallel preferences. If there is no parallel pool and distributed cannot start one, the result is
the full array in the client workspace.

See Also
codistributed | datastore | gather | ones | parpool | spmd | tall | zeros
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distributed.cell
Create distributed cell array

Syntax
D = distributed.cell(n)
D = distributed.cell(m, n, p, ...)
D = distributed.cell([m, n, p, ...])

Description
D = distributed.cell(n) creates an n-by-n distributed array of underlying class cell.

D = distributed.cell(m, n, p, ...) or D = distributed.cell([m, n, p, ...])
create an m-by-n-by-p-by-... distributed array of underlying class cell.

Examples
Create a distributed 1000-by-1000 cell array:

D = distributed.cell(1000)

See Also
cell | codistributed.cell

Introduced in R2009b
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distributed.spalloc
Allocate space for sparse distributed matrix

Syntax
SD = distributed.spalloc(M,N,nzmax)

Description
SD = distributed.spalloc(M,N,nzmax) creates an M-by-N all-zero sparse distributed matrix
with room to hold nzmax nonzeros.

Examples
Allocate space for a 1000-by-1000 sparse distributed matrix with room for up to 2000 nonzero
elements, then define several elements:

N = 1000;
SD = distributed.spalloc(N,N,2*N);
for ii=1:N-1
    SD(ii,ii:ii+1) = [ii ii];
end

See Also
codistributed.spalloc | spalloc | sparse

Introduced in R2009b
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distributed.speye
Create distributed sparse identity matrix

Syntax
DS = distributed.speye(n)
DS = distributed.speye(m,n)
DS = distributed.speye([m,n])

Description
DS = distributed.speye(n) creates an n-by-n sparse distributed array of underlying class
double.

DS = distributed.speye(m,n) or DS = distributed.speye([m,n]) creates an m-by-n sparse
distributed array of underlying class double.

Examples
Create a distributed 1000-by-1000 sparse identity matrix:

 N = 1000;
 DS = distributed.speye(N);

See Also
codistributed.speye | eye | speye

Introduced in R2009b
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distributed.sprand
Create distributed sparse array of uniformly distributed pseudo-random values

Syntax
DS = distributed.sprand(m,n,density)

Description
DS = distributed.sprand(m,n,density) creates an m-by-n sparse distributed array with
approximately density*m*n uniformly distributed nonzero double entries.

Examples
Create a 1000-by-1000 sparse distributed double array DS with approximately 1000 nonzeros.

DS = distributed.sprand(1000,1000,0.001);

Tips
When you use sprand on the workers in the parallel pool, or in an independent or communicating
job, each worker sets its random generator seed to a value that depends only on the labindex or
task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job,
you get the same random data.

See Also
codistributed.sprand | distributed.speye | distributed.sprandn | rand | randn |
sparse | sprand

Introduced in R2009b
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distributed.sprandn
Create distributed sparse array of normally distributed pseudo-random values

Syntax
DS = distributed.sprandn(m,n,density)

Description
DS = distributed.sprandn(m,n,density) creates an m-by-n sparse distributed array with
approximately density*m*n normally distributed nonzero double entries.

Examples
Create a 1000-by-1000 sparse distributed double array DS with approximately 1000 nonzeros.

DS = distributed.sprandn(1000,1000,0.001);

Tips
When you use sprandn on the workers in the parallel pool, or in an independent or communicating
job, each worker sets its random generator seed to a value that depends only on the labindex or
task ID. Therefore, the array on each worker is unique for that job. However, if you repeat the job,
you get the same random data.

See Also
codistributed.sprandn | distributed.speye | distributed.sprand | rand | randn |
sparse | sprandn

Introduced in R2009b
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dload
Load distributed arrays and Composite objects from disk

Syntax
dload
dload filename
dload filename X
dload filename X Y Z ...
dload -scatter ...
[X,Y,Z,...] = dload('filename','X','Y','Z',...)

Description
dload without any arguments retrieves all variables from the binary file named matlab.mat. If
matlab.mat is not available, the command generates an error.

dload filename retrieves all variables from a file given a full pathname or a relative partial
pathname. If filename has no extension, dload looks for filename.mat. dload loads the contents
of distributed arrays and Composite objects onto parallel pool workers, other data types are loaded
directly into the workspace of the MATLAB client.

dload filename X loads only variable X from the file. dload filename X Y Z ... loads only
the specified variables. dload does not support wildcards, nor the -regexp option. If any requested
variable is not present in the file, a warning is issued.

dload -scatter ... distributes nondistributed data if possible. If the data cannot be distributed, a
warning is issued.

[X,Y,Z,...] = dload('filename','X','Y','Z',...) returns the specified variables as
separate output arguments (rather than a structure, which the load function returns). If any
requested variable is not present in the file, an error occurs.

When loading distributed arrays, the data is distributed over the available parallel pool workers using
the default distribution scheme. It is not necessary to have the same size pool open when loading as
when saving using dsave.

When loading Composite objects, the data is sent to the available parallel pool workers. If the
Composite is too large to fit on the current parallel pool, the data is not loaded. If the Composite is
smaller than the current parallel pool, a warning is issued.

Examples
Load variables X, Y, and Z from the file fname.mat:

dload fname X Y Z

Use the function form of dload to load distributed arrays P and Q from file fname.mat:

[P,Q] = dload('fname.mat','P','Q');
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See Also
Composite | distributed | dsave | load | parpool

Introduced in R2010a
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dsave
Save workspace distributed arrays and Composite objects to disk

Syntax
dsave
dsave filename
dsave filename X
dsave filename X Y Z

Description
dsave without any arguments creates the binary file named matlab.mat and writes to the file all
workspace variables, including distributed arrays and Composite objects. You can retrieve the
variable data using dload.

dsave filename saves all workspace variables to the binary file named filename.mat. If you do
not specify an extension for filename, it assumes the extension .mat.

dsave filename X saves only variable X to the file.

dsave filename X Y Z saves X, Y, and Z. dsave does not support wildcards, nor the -regexp
option.

dsave does not support saving sparse distributed arrays.

Examples
With a parallel pool open, create and save several variables to mydatafile.mat:

D = rand(1000,'distributed'); % Distributed array
C = Composite();              %
C{1} = magic(20);             % Data on worker 1 only 
X = rand(40);                 % Client workspace only
dsave mydatafile D C X        % Save all three variables

See Also
Composite | distributed | dload | parpool | save

Introduced in R2010a
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exist
Check whether Composite is defined on workers

Syntax
h = exist(C,labidx)
h = exist(C)

Description
h = exist(C,labidx) returns true if the entry in Composite C has a defined value on the worker
with labindex labidx, false otherwise. In the general case where labidx is an array, the output h
is an array of the same size as labidx, and h(i) indicates whether the Composite entry labidx(i)
has a defined value.

h = exist(C) is equivalent to h = exist(C, 1:length(C)).

If exist(C,labidx) returns true, C(labidx) does not throw an error, provided that the values of
C on those workers are serializable. The function throws an error if any labidx is invalid.

Examples
Define a variable on a random number of workers. Check on which workers the Composite entries are
defined, and get all those values:

 spmd
   if rand() > 0.5
       c = labindex;
   end
 end
 ind = exist(c);
 cvals = c(ind);

See Also
Composite

Introduced in R2008b
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existsOnGPU
Determine if gpuArray or CUDAKernel is available on GPU

Syntax
TF = existsOnGPU(DATA)

Description
TF = existsOnGPU(DATA) returns a logical value indicating whether the gpuArray or CUDAKernel
object represented by DATA is still present on the GPU and available from your MATLAB session. The
result is false if DATA is no longer valid and cannot be used. Such arrays and kernels are invalidated
when the GPU device has been reset with any of the following:

reset(dev)    % Where dev is the current gpuDevice
gpuDevice(ix) % Where ix is valid index of current or different device
gpuDevice([]) % With an empty argument (as opposed to no argument)

Examples

Query Existence of gpuArray

Create a gpuArray on the selected GPU device, then reset the device. Query array’s existence and
content before and after resetting.

g = gpuDevice(1);
M = gpuArray(magic(4));
M_exists = existsOnGPU(M)

    1

M  % Display gpuArray

    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

reset(g);
M_exists = existsOnGPU(M)

    0

M  % Try to display gpuArray

Data no longer exists on the GPU.

clear M

See Also
gpuArray | gpuDevice | parallel.gpu.CUDAKernel | reset
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eye
Identity matrix

Syntax
E = eye(sz,arraytype)
E = eye(sz,datatype,arraytype)

E = eye(sz,'like',P)
E = eye(sz,datatype,'like',P)

C = eye(sz,codist)
C = eye(sz,datatype,codist)
C = eye(sz, ___ ,codist,'noCommunication')
C = eye(sz, ___ ,codist,'like',P)

Description
E = eye(sz,arraytype) creates an arraytype identity matrix with underlying class of double,
with ones on the main diagonal and zeros elsewhere.

E = eye(sz,datatype,arraytype) creates an arraytype identity matrix with underlying class
of datatype, with ones on the main diagonal and zeros elsewhere.

The size and type of array are specified by the argument options according to the following table.

Argument Values Descriptions

sz
n Specifies array size as an n-by-n matrix.
m,n

Specifies array size as an m-by-n matrix.
[m n]

arraytype

'distributed' Specifies distributed array.

'codistributed' Specifies codistributed array, using the default
distribution scheme.

'gpuArray' Specifies gpuArray.

datatype

'double' (default),
'single', 'int8',
'uint8', 'int16',
'uint16', 'int32',
'uint32', 'int64',
or 'uint64'

Specifies underlying class of the array, i.e., the data
type of its elements.

E = eye(sz,'like',P) creates an identity matrix of the same type and underlying class (data
type) as array P.

E = eye(sz,datatype,'like',P) creates an identity matrix of the specified underlying class
(datatype), and the same type as array P.
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C = eye(sz,codist) or C = eye(sz,datatype,codist) creates a codistributed identity matrix
of the specified size and underlying class (the default datatype is 'double'). The codistributor
object, codist, specifies the distribution scheme for creating the codistributed array. For information
on constructing codistributor objects, see the reference pages for codistributor1d and
codistributor2dbc. To use the default distribution scheme, you can specify a codistributor
constructor without arguments. For example:

spmd
    C = eye(8,codistributor1d());
end

C = eye(sz, ___ ,codist,'noCommunication') specifies that no interworker communication is
to be performed when constructing a codistributed array, skipping some error checking steps.

C = eye(sz, ___ ,codist,'like',P) creates a codistributed identity matrix with the specified
size, underlying class (datatype), and distribution scheme. If either the datatype or codistributor
argument is omitted, the characteristic is acquired from the codistributed array P.

Examples
Create Distributed Identity Matrix

Create a 1000-by-1000 distributed identity matrix of underlying class double:

D = eye(1000,'distributed');

Create Codistributed Identity Matrix

Create a 1000-by-1000 codistributed double identity matrix, distributed by its second dimension
(columns).

spmd(4)
    C = eye(1000,'codistributed');
end

With four workers, each worker contains a 1000-by-250 local piece of C.

Create a 1000-by-1000 codistributed uint16 identity matrix , distributed by its columns.
spmd(4)
    codist = codistributor('1d',2,100*[1:numlabs]);
    C = eye(1000,1000,'uint16',codist);
end

Each worker contains a 100-by-labindex local piece of C.

Create gpuArray Identity Matrix

Create a 1000-by-1000 gpuArray identity matrix of underlying class uint32:

G = eye(1000,'uint32','gpuArray');

See Also
Inf | NaN | codistributed.speye | distributed.speye | eye | false | ones | true | zeros
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Introduced in R2006b
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false
Array of logical 0 (false)

Syntax
F = false(sz,arraytype)

F = false(sz,'like',P)

C = false(sz,codist)
C = false(sz, ___ ,codist,'noCommunication')
C = false(sz, ___ ,codist,'like',P)

Description
F = false(sz,arraytype) creates a matrix with false values in all elements.

The size and type of array are specified by the argument options according to the following table.

Argument Values Descriptions

sz

n Specifies size as an n-by-n matrix.
m,n or [m n] Specifies size as an m-by-n matrix.
m,n,...,k or [m
n ... k]

Specifies size as an m-by-n-by-...-by-k array.

arraytype

'distributed' Specifies distributed array.

'codistributed' Specifies codistributed array, using the default
distribution scheme.

'gpuArray' Specifies gpuArray.

F = false(sz,'like',P) creates an array of false values with the same type as array P.

C = false(sz,codist) creates a codistributed array of false values with the specified size. The
codistributor object codist specifies the distribution scheme for creating the codistributed array. For
information on constructing codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc. To use the default distribution scheme, you can specify a codistributor
constructor without arguments. For example:

spmd
    C = false(8,codistributor1d());
end

C = false(sz, ___ ,codist,'noCommunication') specifies that no interworker communication
is to be performed when constructing a codistributed array, skipping some error checking steps.

C = false(sz, ___ ,codist,'like',P) creates a codistributed array of false values with the
specified size and distribution scheme. If the codistributor argument is omitted, the distribution
scheme is taken from the codistributed array P.
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Examples
Create Distributed False Matrix

Create a 1000-by-1000 distributed array of falses with underlying class double:

D = false(1000,'distributed');

Create Codistributed False Matrix

Create a 1000-by-1000 codistributed matrix of falses, distributed by its second dimension
(columns).

spmd(4)
    C = false(1000,'codistributed');
end

With four workers, each worker contains a 1000-by-250 local piece of C.

Create a 1000-by-1000 codistributed matrix of falses, distributed by its columns.
spmd(4)
    codist = codistributor('1d',2,100*[1:numlabs]);
    C = false(1000,1000,codist);
end

Each worker contains a 100-by-labindex local piece of C.

Create gpuArray False Matrix

Create a 1000-by-1000 gpuArray of falses:

G = false(1000,'gpuArray');

See Also
Inf | NaN | eye | false | ones | true | zeros

Introduced in R2006b

 false

10-103



fetchNext
Package: parallel

Retrieve next available unread FevalFuture outputs

Syntax
[idx,B1,B2,...,Bn] = fetchNext(F)
[idx,B1,B2,...,Bn] = fetchNext(F,TIMEOUT)

Description
[idx,B1,B2,...,Bn] = fetchNext(F) waits for an unread FevalFuture in the array of futures F
to finish, and then returns the linear index of that future in array F as idx, along with the future’s
results in B1,B2,...,Bn. Before this call, the 'Read' property of the particular future is false;
afterward it is true.

[idx,B1,B2,...,Bn] = fetchNext(F,TIMEOUT) waits no longer than TIMEOUT seconds for a
result to become available. If the timeout expires before any result becomes available, all output
arguments are empty.

If there are no futures in F whose 'Read' property is false, then an error is reported. You can
check whether there are any unread futures using anyUnread = ~all([F.Read]).

If the element of F which has become finished encountered an error during execution, that error will
be thrown by fetchNext. However, that future’s 'Read' property is set true, so that any
subsequent calls to fetchNext can proceed.

Examples
Request several function evaluations, and update a progress bar while waiting for completion.

N = 100;
for idx = N:-1:1
    % Compute the rank of N magic squares
    F(idx) = parfeval(@rank,1,magic(idx));
end
% Build a waitbar to track progress
h = waitbar(0,'Waiting for FevalFutures to complete...');
results = zeros(1,N);
for idx = 1:N
    [completedIdx,thisResult] = fetchNext(F);
    % store the result
    results(completedIdx) = thisResult;
    % update waitbar
    waitbar(idx/N,h,sprintf('Latest result: %d',thisResult));
end
delete(h)
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Tips
The fetchNext function returns the linear index of the future from its array. If instead, you need the
subscript values of a multidimensional array, you can use the ind2sub function to convert the values.

See Also
fetchOutputs | isequal | parfeval | parfevalOnAll | parpool

Introduced in R2013b
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fetchOutputs
Package: parallel

Retrieve output arguments from all tasks in job

Syntax
data = fetchOutputs(job)

Description
data = fetchOutputs(job) retrieves the output arguments contained in the tasks of a finished
job. If the job has M tasks, each row of the M-by-N cell array data contains the output arguments for
the corresponding task in the job. Each row has N elements, where N is the greatest number of
output arguments from any one task in the job. The N elements of a row are arrays containing the
output arguments from that task. If a task has less than N output arguments, the excess arrays in the
row for that task are empty. The order of the rows in data is the same as the order of the tasks
contained in the job’s Tasks property.

Calling fetchOutputs does not remove the output data from the location where it is stored. To
remove the output data, use the delete function to remove individual tasks or entire jobs.

fetchOutputs reports an error if the job is not in the 'finished' state, or if one of its tasks
encountered an error during execution. If some tasks completed successfully, you can access their
output arguments directly from the OutputArguments property of the tasks.

Examples
Create a job to generate a random matrix:

myCluster = parcluster; % Use default profile
j = createJob(myCluster,'Name','myjob');
t = createTask(j,@rand,1,{10});
submit(j);

Wait for the job to finish and retrieve the random matrix:

wait(j)
data = fetchOutputs(j);
data{1}

Introduced in R2012a
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fetchOutputs
Package: parallel

Retrieve all output arguments from Future

Syntax
[B1,B2,...,Bn] = fetchOutputs(F)
[B1,B2,...,Bn] = fetchOutputs(F,'UniformOutput',false)

Description
[B1,B2,...,Bn] = fetchOutputs(F) fetches all outputs of the Future object F after first
waiting for each element of F to reach the state 'finished'. An error results if any element of F has
NumOutputArguments less than the requested number of outputs.

When F is a vector of FevalFutures, each output argument is formed by concatenating the
corresponding output arguments from each future in F. An error results if these outputs cannot be
concatenated. To avoid this error, set the 'UniformOutput' option to false.

[B1,B2,...,Bn] = fetchOutputs(F,'UniformOutput',false) requests that fetchOutputs
combine the future outputs into cell arrays B1,B2,...,Bn. The outputs of F can be of any size or
type.

After the call to fetchOutputs, all futures in F have their 'Read' property set to true.
fetchOutputs returns outputs for all futures in F regardless of the value of each future’s 'Read'
property.

Examples
Create an FevalFuture, and fetch its outputs.

f = parfeval(@rand,1,3);
R = fetchOutputs(f)

0.5562    0.6218    0.3897
0.0084    0.4399    0.2700
0.0048    0.9658    0.8488

Create an FevalFuture vector, and fetch all its outputs. For efficiency, preallocate an array of future
objects before.

F(1:10) = parallel.FevalFuture;
for idx = 1:10
    F(idx) = parfeval(@rand,1,1,10); % One row each future
end
R = fetchOutputs(F); % 10-by-10 concatenated output

See Also
fetchNext | parfeval | parpool
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Introduced in R2013b
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feval
Evaluate kernel on GPU

Syntax
feval(KERN, x1, ..., xn)
[y1, ..., ym] = feval(KERN, x1, ..., xn)

Description
feval(KERN, x1, ..., xn) evaluates the CUDA kernel KERN with the given arguments
x1, ..., xn. The number of input arguments, n, must equal the value of the NumRHSArguments
property of KERN, and their types must match the description in the ArgumentTypes property of
KERN. The input data can be regular MATLAB data, GPU arrays, or a mixture of the two.

[y1, ..., ym] = feval(KERN, x1, ..., xn) returns multiple output arguments from the
evaluation of the kernel. Each output argument corresponds to the value of the non-const pointer
inputs to the CUDA kernel after it has executed. The output from feval running a kernel on the GPU
is always gpuArray type, even if all the inputs are data from the MATLAB workspace. The number of
output arguments, m, must not exceed the value of the MaxNumLHSArguments property of KERN.

Examples
If the CUDA kernel within a CU file has the following signature:

void myKernel(const float * pIn, float * pInOut1, float * pInOut2)

The corresponding kernel object in MATLAB then has the properties:

MaxNumLHSArguments: 2
   NumRHSArguments: 3
     ArgumentTypes: {'in single vector'  ...
                     'inout single vector' 'inout single vector'}

You can use feval on this code’s kernel (KERN) with the syntax:

[y1, y2] = feval(KERN, x1, x2, x3)    

The three input arguments, x1, x2, and x3, correspond to the three arguments that are passed into
the CUDA function. The output arguments, y1 and y2, are gpuArray types, and correspond to the
values of pInOut1 and pInOut2 after the CUDA kernel has executed.

See Also
arrayfun | gather | gpuArray | parallel.gpu.CUDAKernel

Introduced in R2010b
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findJob
Find job objects stored in cluster

Syntax
out = findJob(c)
[pending queued running completed] = findJob(c)
out = findJob(c,'p1',v1,'p2',v2,...)

Arguments
c Cluster object in which to find the job.
pending Array of jobs whose State is pending in cluster c.
queued Array of jobs whose State is queued in cluster c.
running Array of jobs whose State is running in cluster c.
completed Array of jobs that have completed running, i.e., whose State is

finished or failed in cluster c.
out Array of jobs found in cluster c.
p1, p2 Job object properties to match.
v1, v2 Values for corresponding object properties.

Description
out = findJob(c) returns an array, out, of all job objects stored in the cluster c. Jobs in the array
are ordered by the ID property of the jobs, indicating the sequence in which they were created.

[pending queued running completed] = findJob(c) returns arrays of all job objects stored
in the cluster c, by state. Within pending, running, and completed, the jobs are returned in
sequence of creation. Jobs in the array queued are in the order in which they are queued, with the
job at queued(1) being the next to execute. The completed jobs include those that failed. Jobs that
are deleted or whose status is unavailable are not returned by this function.

out = findJob(c,'p1',v1,'p2',v2,...) returns an array, out, of job objects whose property
values match those passed as property-value pairs, p1, v1, p2, v2, etc. The property name must be a
character vector, with the value being the appropriate type for that property. For a match, the object
property value must be exactly the same as specified, including letter case. For example, if a job’s
Name property value is MyJob, then findJob will not find that object while searching for a Name
property value of myjob.

See Also
createJob | findTask | parcluster | recreate | submit

Introduced before R2006a
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findTask
Task objects belonging to job object

Syntax
tasks = findTask(j)
tasks = findTask(j, taskFcn)
[pending running completed] = findTask(j)
tasks = findTask(j,'p1',v1,'p2',v2,...)

Arguments
j Job object.
tasks Returned task objects.
pending Array of tasks in job obj whose State is pending.
running Array of tasks in job obj whose State is running.
completed Array of completed tasks in job obj, i.e., those whose State is

finished or failed.
p1, p2 Task object properties to match.
v1, v2 Values for corresponding object properties.

Description
tasks = findTask(j) gets a 1-by-N array of task objects belonging to a job object j. Tasks in the
array are ordered by the ID property of the tasks, indicating the sequence in which they were
created.

tasks = findTask(j, taskFcn) returns an array of task objects that belong to the job j, using
taskFcn to select them. taskFcn is a function handle that accepts j.Tasks as an input argument,
and returns a logical array indicating the tasks to return.

[pending running completed] = findTask(j) returns arrays of all task objects stored in the
job object j, sorted by state. Within each array (pending, running, and completed), the tasks are
returned in sequence of creation.

tasks = findTask(j,'p1',v1,'p2',v2,...) returns an array of task objects belonging to a
job object j. The returned task objects will be only those matching the specified property-value pairs,
p1, v1, p2, v2, etc. The property name must be a character vector, with the value being the
appropriate type for that property. For a match, the object property value must be exactly the same as
specified, including letter case. For example, if a task’s Name property value is MyTask, then
findTask will not find that object while searching for a Name property value of mytask.

Examples
Create a job object.
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c = parcluster();
j = createJob(c);

Add a task to the job object.

createTask(j,@rand,1,{10})

Find all task objects now part of job j.

t = findTask(j)

Tips
If job j is contained in a remote service, findTask will result in a call to the remote service. This
could result in findTask taking a long time to complete, depending on the number of tasks retrieved
and the network speed. Also, if the remote service is no longer available, an error will be thrown.

See Also
createJob | createTask | findJob

Introduced before R2006a
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for
for-loop over distributed range

Syntax
for variable = drange(colonop)
    statement
    ...
    statement
end

Description
The general format is

for variable = drange(colonop)
    statement
    ...
    statement
end

The colonop is an expression of the form start:increment:finish or start:finish. The
default value of increment is 1. The colonop is partitioned by codistributed.colon into numlabs
contiguous segments of nearly equal length. Each segment becomes the iterator for a conventional
for-loop on an individual worker.

The most important property of the loop body is that each iteration must be independent of the other
iterations. Logically, the iterations can be done in any order. No communication with other workers is
allowed within the loop body. The functions that perform communication are gop, gcat, gplus,
codistributor, codistributed, gather, and redistribute.

It is possible to access portions of codistributed arrays that are local to each worker, but it is not
possible to access other portions of codistributed arrays.

The break statement can be used to terminate the loop prematurely.

Examples
Find the rank of magic squares. Access only the local portion of a codistributed array.

r = zeros(1, 40, codistributor());
for n = drange(1:40)
   r(n) = rank(magic(n));
end
r = gather(r);

Perform Monte Carlo approximation of pi. Each worker is initialized to a different random number
state.

m = 10000;
for p = drange(1:numlabs)
   z = rand(m,1) + i*rand(m,1);

 for
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   c = sum(abs(z) < 1)
end
k = gplus(c)
p = 4*k/(m*numlabs);

Attempt to compute Fibonacci numbers. This will not work, because the loop bodies are dependent.

f = zeros(1, 50, codistributor());
f(1) = 1;
f(2) = 2;
for n = drange(3:50)
   f(n) = f(n-1) + f(n-2)
end

See Also
for | numlabs | parfor

Introduced in R2007b
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gather
Transfer distributed array or gpuArray to local workspace

Syntax
X = gather(A)
[X1,X2,...,Xn] = gather(A1,A2,...,,Xn)
X = gather(C,lab)
[X1,X2,...,Xn] = gather(C1,C2,...,Cn,lab)

Description
X = gather(A) can operate on the following array data:

• On a gpuArray: Transfers the elements of A from the GPU to the local workspace and assigns them
to X.

• On a distributed array, outside an spmd statement: Gathers together the elements of A from the
multiple workers to the local workspace and assigns them to X.

• On a codistributed array, inside an spmd statement or communicating job: Gathers together the
elements of A and replicates them into X on every worker.

You can call gather on other data types, such as tall arrays (See gather (tall)). If the data type
does not support gathering, then gather has no effect.

X = gather(gpuArray(X)), X = gather(distributed(X)), or X =
gather(codistributed(X)) return the original array X.

[X1,X2,...,Xn] = gather(A1,A2,...,,Xn) gathers multiple arrays A1,A2,...,,An into the
corresponding outputs X1,X2,...,Xn. The number of input arguments and output arguments must
match.

X = gather(C,lab) converts a codistributed array C to a variant array X, such that all of the
elements are contained on worker lab, and X is a 0-by-0 empty double on all other workers.

[X1,X2,...,Xn] = gather(C1,C2,...,Cn,lab) gathers codistributed arrays C1,C2,...,Cn
into corresponding outputs X1,X2,...,Xn, with all elements on worker lab. The number of input
arguments and output arguments must match.

If the input argument to gather is not a distributed, a codistributed, or a gpuArray, the output is the
same as the input.

Examples

Gather gpuArrays

Gather the results of a GPU operation to the MATLAB workspace.

G = gpuArray(rand(1024,1));
F = sqrt(G);   % Input and output are both gpuArray
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W = gather(G); % Return array to workspace
whos

Name         Size       Bytes  Class

F         1024x1          108  gpuArray
G         1024x1          108  gpuArray
W         1024x1         8192  double

Gather Distributed Arrays

Gather all of the elements from a distributed array D onto the client.

n = 10;
D = distributed(magic(n)); % Distribute array to workers
M = gather(D)              % Return array to client

Gather Codistributed Arrays

Distribute a magic square across your workers, then gather the whole matrix onto every worker and
then onto the client. This code results in the equivalent of M = magic(n) on all workers and the
client.

n = 10;
spmd
  C = codistributed(magic(n));
  M = gather(C) % Gather all elements to all workers
end
S = gather(C)   % Gather elements to client

Gather all of the elements of C onto worker 1, for operations that cannot be performed across
distributed arrays.

n = 10;
spmd
  C = codistributed(magic(n));
  out = gather(C,1);
  if labindex == 1
    % Characteristic sum for this magic square:
    characteristicSum = sum(1:n^2)/n;
    % Ensure that the diagonal sums are equal to the 
    % characteristic sum:
    areDiagonalsEqual = isequal ...
      (trace(out),trace(flipud(out)),characteristicSum)
  end
end

Lab 1:
  areDiagonalsEqual =
    1

Tips
Note that gather assembles the codistributed or distributed array in the workspaces of all the
workers on which it executes, or on the MATLAB client, respectively, but not both. If you are using
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gather within an spmd statement, the gathered array is accessible on the client via its
corresponding Composite object; see “Access Worker Variables with Composites” on page 3-7. If you
are running gather in a communicating job, you can return the gathered array to the client as an
output argument from the task.

As the gather function requires communication between all the workers, you cannot gather data
from all the workers onto a single worker by placing the function inside a conditional statement such
as if labindex == 1.

See Also
arrayfun | bsxfun | codistributed | distributed | gpuArray | pagefun

Introduced in R2006b
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gcat
Global concatenation

Syntax
Xs = gcat(X)
Xs = gcat(X,dim)
Xs = gcat(X,dim,targetlab)

Description
Xs = gcat(X) concatenates the variant array X from each worker in the second dimension. The
result is replicated on all workers.

Xs = gcat(X,dim) concatenates the variant array X from each worker in the dimension indicated
by dim.

Xs = gcat(X,dim,targetlab) performs the reduction, and places the result into res only on the
worker indicated by targetlab. res is set to [] on all other workers.

Examples
With four workers,

Xs = gcat(labindex)

returns Xs = [1 2 3 4] on all four workers.

See Also
cat | gop | labindex | numlabs

Introduced in R2006b
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gcp
Get current parallel pool

Syntax
p = gcp
p = gcp('nocreate')

Description
p = gcp returns a parallel.Pool object representing the current parallel pool. The current pool is
where parallel language features execute, such as parfor, spmd, distributed, Composite,
parfeval and parfevalOnAll.

If no parallel pool exists, gcp starts a new parallel pool and returns a pool object for that, unless
automatic pool starts are disabled in your parallel preferences. If no parallel pool exists and
automatic pool starts are disabled, gcp returns an empty pool object.

p = gcp('nocreate') returns the current pool if one exists. If no pool exists, the 'nocreate'
option causes gcp not to create a pool, regardless of your parallel preferences settings.

Examples

Find Size of Current Pool

Find the number of workers in the current parallel pool.

p = gcp('nocreate'); % If no pool, do not create new one.
if isempty(p)
    poolsize = 0;
else
    poolsize = p.NumWorkers
end

Delete Current Pool

Use the parallel pool object to delete the current pool.

delete(gcp('nocreate'))

See Also
Composite | delete | distributed | parfeval | parfevalOnAll | parfor | parpool | spmd

Introduced in R2013b
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getAttachedFilesFolder
Folder into which AttachedFiles are written

Syntax
folder = getAttachedFilesFolder
folder = getAttachedFilesFolder(FileName)

Arguments
folder Character vector indicating location where files from job’s AttachedFiles

property are placed
FileName Character vector specifying all or part of the attached file or folder name

Description
folder = getAttachedFilesFolder returns the path to the local folder into which
AttachedFiles are written on the worker. This function returns an empty array if it is not called on
a MATLAB worker.

folder = getAttachedFilesFolder(FileName) returns the path name to the specified
attached folder on the worker, or the folder containing the specified attached file. FileName can
match either the full name of the attached file or folder, or on the ending part of the name. Multiple
match results return a cell array.

If you have attached a folder, this does not match on file names within that folder.

Suppose you attach the folder 'C:\monday\tuesday\wednesday\thursday', which on the
workers is stored in /tmp/MJS/tp12345. The following table displays the results of various match
attempts.

Specified Matching Character Vector
Argument

Result

getAttachedFilesFolder('C:\monday') Empty result, because 'C:\monday' is only the
start of the path, and does not include
'thursday'

getAttachedFilesFolder('wednesday') Empty result, because 'wednesday' is in the
middle of the path and does not include
'thursday'

getAttachedFilesFolder('thurs') Empty result, because 'thurs' is not the ending
of the folder name.

getAttachedFilesFolder('thursday') '/tmp/MJS/tp12345'
getAttachedFilesFolder('wednesday
\thursday')

'/tmp/MJS/tp12345'
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Examples
Attach a folder to a parallel pool, then find its location on the worker to execute one of its files.

myPool = parpool;
addAttachedFiles(myPool,'mydir');
spmd
    folder = getAttachedFilesFolder('mydir');
    oldFolder = cd(folder);  % Change to that folder
    [OK,output] = system('myExecutable');
    cd(oldFolder);           % Change to original folder
 end

Attach an executable file to a parallel pool, then change to its folder for accessing and processing
some data.

myPool = parpool;
addAttachedFiles(myPool,'myExecutable');
spmd
    system('myExecutable');   % Now on MATLAB path
    folder = getAttachedFilesFolder('myExecutable');
    oldFolder = cd(folder);
    fid = open('myData.txt'); % Access data file
        % Process fid
    close(fid)
    cd(oldFolder);            % Change back to the original folder
end

See Also
Functions
addAttachedFiles | getCurrentCluster | getCurrentJob | getCurrentTask |
getCurrentWorker

Introduced in R2012a

 getAttachedFilesFolder

10-121



getCodistributor
Codistributor object for existing codistributed array

Syntax
codist = getCodistributor(D)

Description
codist = getCodistributor(D) returns the codistributor object of codistributed array D.
Properties of the object are Dimension and Partition for 1-D distribution; and BlockSize,
LabGrid, and Orientation for 2-D block cyclic distribution. For any one codistributed array,
getCodistributor returns the same values on all workers. The returned codistributor object is
complete, and therefore suitable as an input argument for codistributed.build.

Examples
Get the codistributor object for a 1-D codistributed array that uses default distribution on 4 workers:

spmd (4)
    I1 = eye(64,codistributor1d());
    codist1 = getCodistributor(I1)
    dim     = codist1.Dimension
    partn   = codist1.Partition
end

Get the codistributor object for a 2-D block cyclic codistributed array that uses default distribution on
4 workers:

spmd (4)
    I2 = eye(128,codistributor2dbc());
    codist2 = getCodistributor(I2)
    blocksz = codist2.BlockSize
    partn   = codist2.LabGrid
    ornt    = codist2.Orientation
end

Demonstrate that these codistributor objects are complete:

spmd (4)
    isComplete(codist1)
    isComplete(codist2)
end

See Also
codistributed | codistributed.build | getLocalPart | redistribute

Introduced in R2009b
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getCurrentCluster
Cluster object that submitted current task

Syntax
c = getCurrentCluster

Arguments
c The cluster object that scheduled the task currently being evaluated by the worker

session.

Description
c = getCurrentCluster returns the parallel.Cluster object that has sent the task currently
being evaluated by the worker session. Cluster object c is the Parent of the task’s parent job.

Examples
Find the current cluster.

myCluster = getCurrentCluster;

Get the host on which the cluster is running.

host = myCluster.Host;

Tips
If this function is executed in a MATLAB session that is not a worker, you get an empty result.

See Also
getAttachedFilesFolder | getCurrentJob | getCurrentTask | getCurrentWorker

Introduced in R2012a
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getCurrentJob
Job object whose task is currently being evaluated

Syntax
job = getCurrentJob

Arguments
job The job object that contains the task currently being evaluated by the worker

session.

Description
job = getCurrentJob returns the parallel.Job object that is the Parent of the task currently
being evaluated by the worker session.

Tips
If the function is executed in a MATLAB session that is not a worker, you get an empty result.

See Also
getAttachedFilesFolder | getCurrentCluster | getCurrentTask | getCurrentWorker

Introduced before R2006a
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getCurrentTask
Task object currently being evaluated in this worker session

Syntax
task = getCurrentTask

Arguments
task The task object that the worker session is currently evaluating.

Description
task = getCurrentTask returns the parallel.Task object whose function is currently being
evaluated by the MATLAB worker session on the cluster.

Tips
If the function is executed in a MATLAB session that is not a worker, you get an empty result.

See Also
getAttachedFilesFolder | getCurrentCluster | getCurrentJob | getCurrentWorker

Introduced before R2006a
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getCurrentWorker
Worker object currently running this session

Syntax
worker = getCurrentWorker

Arguments
worker The worker object that is currently evaluating the task that contains this

function.

Description
worker = getCurrentWorker returns the parallel.Worker object representing the MATLAB
worker session that is currently evaluating the task function that contains this call.

If the function runs in a MATLAB session that is not a worker, it returns an empty result.

Examples
Find the Host property of a worker that runs a task. The file identifyWorkerHost.m contains the
following function code.

function localHost = identifyWorkerHost()
  thisworker = getCurrentWorker; % Worker object
  localHost = thisworker.Host;   % Host property
end

Create a job with a task to execute this function on a worker and return the worker’s host name. This
example manually attaches the necessary code file.

c = parcluster();
j = createJob(c);
j.AttachedFiles = {'identifyWorkerHost.m'};
t = createTask(j,@identifyWorkerHost,1,{});
submit(j)
wait(j)
workerhost = fetchOutputs(j)

See Also
getAttachedFilesFolder | getCurrentCluster | getCurrentJob | getCurrentTask

Introduced before R2006a
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getDebugLog
Read output messages from job run in CJS cluster

Syntax
str = getDebugLog(cluster,job_or_task)

Arguments
str Variable to which messages are returned as a character vector

expression.
cluster Cluster object referring to Microsoft Windows HPC Server (or CCS),

Platform LSF, PBS Pro, or TORQUE cluster, created by parcluster.
job_or_task Object identifying job or task whose messages you want.

Description
str = getDebugLog(cluster,job_or_task) returns any output written to the standard output
or standard error stream by the job or task identified by job_or_task, being run in the cluster
identified by cluster.

Examples
This example shows how to create and submit a communicating job, and how to retrieve the job’s
debug log. Assume that you already have a cluster profile called My3pCluster that defines the
properties of the cluster.

c = parcluster('My3pCluster');

j = createCommunicatingJob(c);
createTask(j,@labindex,1,{});
submit(j);

getDebugLog(c,j);

See Also
createCommunicatingJob | createJob | createTask | parcluster

Introduced before R2006a
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getJobClusterData
Get specific user data for job on generic cluster

Syntax
userdata = getJobClusterData(cluster,job)

Arguments
userdata Information that was previously stored for this job
cluster Cluster object identifying the generic third-party cluster running the job
job Job object identifying the job for which to retrieve data

Description
userdata = getJobClusterData(cluster,job) returns data stored for the job job that was
derived from the generic cluster cluster. The information was originally stored with the function
setJobClusterData. For example, it might be useful to store the third-party scheduler’s external ID
for this job, so that the function specified in GetJobStateFcn can later query the scheduler about
the state of the job.

For more information and examples on using these functions and properties, see “Plugin Scripts for
Generic Schedulers” on page 6-17.

See Also
setJobClusterData

Introduced in R2012a
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getJobFolder
Folder on client where jobs are stored

Syntax
joblocation = getJobFolder(cluster,job)

Description
joblocation = getJobFolder(cluster,job) returns the path to the folder on disk where files
are stored for the specified job and cluster. This folder is valid only the client MATLAB session, not
necessarily the workers. This method exists only on clusters using the generic interface.

See Also
getJobFolderOnCluster | parcluster

Introduced in R2012a
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getJobFolderOnCluster
Folder on cluster where jobs are stored

Syntax
joblocation = getJobFolderOnCluster(cluster,job)

Description
joblocation = getJobFolderOnCluster(cluster,job) returns the path to the folder on disk
where files are stored for the specified job and cluster. This folder is valid only in worker MATLAB
sessions. An error results if the HasSharedFilesystem property of the cluster is false. This
method exists only on clusters using the generic interface.

See Also
getJobFolder | parcluster

Introduced in R2012a
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getLocalPart
Local portion of codistributed array

Syntax
L = getLocalPart(A)

Description
L = getLocalPart(A) returns the local portion of a codistributed array.

Examples
With four workers,

A = magic(4);   %replicated on all workers
D = codistributed(A, codistributor1d(1));
L = getLocalPart(D)

returns

Lab 1: L = [16  2  3 13]
Lab 2: L = [ 5 11 10  8]
Lab 3: L = [ 9  7  6 12]
Lab 4: L = [ 4 14 15  1]

See Also
codistributed | codistributor

Introduced in R2009b
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getLogLocation
Log location for job or task

Syntax
logfile = getLogLocation(cluster,cj)
logfile = getLogLocation(cluster,it)

Description
logfile = getLogLocation(cluster,cj) for a generic cluster cluster and communicating job
cj, returns the location where the log data should be stored for the whole job cj.

logfile = getLogLocation(cluster,it) for a generic cluster cluster and task it of an
independent job returns the location where the log data should be stored for the task it.

This function can be useful during submission, to instruct the third-party cluster to put worker output
logs in the correct location.

See Also
parcluster

Introduced in R2012a
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getTaskSchedulerIDs
Package: parallel.job

Scheduler IDs of tasks in job

Syntax
schedulerIDs = getTaskSchedulerIDs(job)

Description
schedulerIDs = getTaskSchedulerIDs(job) returns the SchedulerID of each task on the job
job. Note that SchedulerID applies only to third-party schedulers.

Examples

Get Scheduler IDs of Tasks

Create a cluster object by using parcluster. In the code below, change MyThirdPartyScheduler
to the name of the profile of your third-party scheduler.

c = parcluster('MyThirdPartyScheduler');

Create a job and create some tasks for it. Then, submit the job.

job = createJob(c);
for idx = 1:2
    createTask(job,@ode45,2,{@vdp1,[0,10],[idx,0]});
end
submit(job)

To get the scheduler IDs of the tasks on the job, use getTaskSchedulerIDs. You can use these IDs
to refer to the corresponding jobs on the third-party scheduler.

getTaskSchedulerIDs(job)

ans = 1×1 cell array
    {'4933'}

In this case, the scheduler has assigned the ID 4933 to this job.

Wait for the job to finish and fetch its outputs.

wait(job);
out = fetchOutputs(job)

out = 2×2 cell array
    {121×1 double}    {121×2 double}
    {129×1 double}    {129×2 double}
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When you are done retrieving information from the job, delete it to clean up its data.

delete(job);
clear job

Input Arguments
job — Job
parallel.Job object

Job object that represents the job on the third-party scheduler, specified as a parallel.Job object.
Example: job = createJob(parcluster);
Data Types: parallel.Job

Output Arguments
schedulerIDs — Scheduler IDs
cell array of character vectors

SchedulerID of each task on job, returned as a cell array of character vectors.

See Also
parallel.Job | parcluster

Topics
“Integrate MATLAB with Third-Party Schedulers” (MATLAB Parallel Server)

Introduced in R2019b
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globalIndices
Global indices for local part of codistributed array

Syntax
K = globalIndices(C,dim)
K = globalIndices(C,dim,lab)
[E,F] = globalIndices(C,dim)
[E,F] = globalIndices(C,dim,lab)
K = globalIndices(codist,dim,lab)
[E,F] = globalIndices(codist,dim,lab)

Description
globalIndices tells you the relationship between indices on a local part and the corresponding
index range in a given dimension on the codistributed array. The globalIndices method on a
codistributor object allows you to get this relationship without actually creating the array.

K = globalIndices(C,dim) or K = globalIndices(C,dim,lab) returns a vector K so that
getLocalPart(C) = C(...,K,...) in the specified dimension dim of codistributed array C on the
specified worker. If the lab argument is omitted, the default is labindex.

[E,F] = globalIndices(C,dim) or [E,F] = globalIndices(C,dim,lab) returns two
integers E and F so that getLocalPart(C) = C(...,E:F,...) of codistributed array C in the
specified dimension dim on the specified worker. If the lab argument is omitted, the default is
labindex.

K = globalIndices(codist,dim,lab) is the same as K = globalIndices(C,dim,lab),
where codist is the codistributor to be used for C, or codist = getCodistributor(C). This
allows you to get the global indices for a codistributed array without having to create the array itself.

[E,F] = globalIndices(codist,dim,lab) is the same as [E,F] =
globalIndices(C,dim,lab), where codist is the codistributor to be used for C, or codist =
getCodistributor(C). This allows you to get the global indices for a codistributed array without
having to create the array itself.

Examples
Create a 2-by-22 codistributed array among four workers, and view the global indices on each lab:

spmd
    C = zeros(2,22,codistributor1d(2,[6 6 5 5]));
    if labindex == 1
       K = globalIndices(C,2)     % returns K = 1:6.
    elseif labindex == 2
       [E,F] = globalIndices(C,2) % returns E = 7, F = 12.
    end
    K = globalIndices(C,2,3)      % returns K = 13:17.
    [E,F] = globalIndices(C,2,4)  % returns E = 18, F = 22.
 end
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Use globalIndices to load data from a file and construct a codistributed array distributed along its
columns, i.e., dimension 2. Notice how globalIndices makes the code not specific to the number of
workers and alleviates you from calculating offsets or partitions.

spmd
    siz = [1000,1000];
    codistr = codistributor1d(2,[],siz);
 
    % Use globalIndices to figure out which columns 
    % each worker should load.
    [firstCol,lastCol] = globalIndices(codistr,2);
 
    % Call user-defined function readRectangleFromFile to
    % load all the values that should go into
    % the local part for this worker.
    labLocalPart = readRectangleFromFile(fileName, ...
                            1,siz(1),firstCol,lastCol);
 
    % With the local part and codistributor,
    % construct the corresponding codistributed array.
    C = codistributed.build(labLocalPart,codistr);
end       

See Also
getLocalPart | labindex

Introduced in R2008a
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gop
Global operation across all workers

Syntax
res = gop(FUN,x)
res = gop(FUN,x,targetlab)

Arguments
FUN Function to operate across workers.
x Argument to function F, should be the same variable on all workers, but can have

different values.
res Variable to hold reduction result.
targetlab Lab to which reduction results are returned. This value is returned by that worker’s

labindex.

Description
res = gop(FUN,x) is the reduction via the function FUN of the quantities x from each worker. The
result is duplicated on all workers.

FUN can be a handle to any function, including user-written functions and user-defined anonymous
functions. It should accept two arguments of the same type, and return one result of that same type,
so it can be used iteratively in the form:

  FUN(FUN(x1,x2),FUN(x3,x4))

The function FUN should be associative, that is,

FUN(FUN(x1,x2),x3) = FUN(x1,FUN(x2,x3))

res = gop(FUN,x,targetlab) performs the reduction, and places the result into res only on the
worker indicated by targetlab. res is set to [ ] on all other workers.

Examples
This example shows how to calculate the sum and maximum values for x among all workers.

p = parpool('local',4);
x = Composite(); 
x{1} = 3;
x{2} = 1;
x{3} = 4;
x{4} = 2;
spmd
    xsum = gop(@plus,x);
    xmax = gop(@max,x);
end
xsum{1}
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10

xmax{1}

4

This example shows how to horizontally concatenate the column vectors of x from all workers into a
matrix. It uses the same 4-worker parallel pool opened by the previous example.

x{1} = [3;30];
x{2} = [1;10];
x{3} = [4;40];
x{4} = [2;20];
spmd
    res = gop(@horzcat,x);
end
res{1}

     3     1     4     2
    30    10    40    20

This example shows how to use an anonymous function with gop to join character vectors with spaces
between them. In this case, the character vectors are created from each worker’s labindex value.

afun = @(a,b)[a,' ',b]
spmd
    res = gop(afun,num2str(labindex));
end
res{1}

1 2 3 4

See Also
labBarrier | labindex | numlabs

Topics
“Using GOP to Achieve MPI_Allreduce Functionality”

Introduced before R2006a
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gplus
Global addition

Syntax
S = gplus(X)
S = gplus(X,targetlab)

Description
S = gplus(X) returns the addition of the variant array X from each worker. The result S is
replicated on all workers.

S = gplus(X,targetlab) performs the addition, and places the result into S only on the worker
indicated by targetlab. S is set to [] on all other workers.

Examples
With four workers,

S = gplus(labindex)

calculates S = 1 + 2 + 3 + 4, and returns 10 on all four workers.

See Also
gop | labindex

Introduced in R2006b
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gpuDeviceCount
Package: parallel.gpu

Number of GPU devices present

Syntax
n = gpuDeviceCount

Description
n = gpuDeviceCount returns the number of GPU devices found in your computer.

Examples
Determine how many GPU devices you have available in your computer and examine the properties of
each.

n = gpuDeviceCount;
for ii = 1:n
    gpuDevice(ii)
end

See Also
arrayfun | feval | gpuDevice | parallel.gpu.CUDAKernel

Topics
“GPU Support by Release” on page 8-38

Introduced in R2010b
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gpurng
Control random number generation for GPU calculations

Syntax
gpurng(seed)
gpurng('shuffle')
gpurng(seed,generator)
gpurng('shuffle',generator)
gpurng('default')
S = gpurng
gpurng(S)
S = gpurng( ___ )

Description
gpurng(seed) sets the starting point, or seed, of the random number generator used in GPU
calculations, so that rand, randi, and randn produce predictable sequences of numbers.

gpurng('shuffle') sets the seed of the random number generator based on the current time so
that rand, randi, and randn produce different sequences of numbers after each time you call
gpurng.

gpurng(seed,generator) or gpurng('shuffle',generator) selects the type of random
number generator used by rand, randi, and randn.

gpurng('default') returns the settings of the random number generator to their default values.
The random numbers produced are the same as if you had restarted MATLAB. The default setting is
the Threefry generator with seed 0.

S = gpurng returns the current state of the random number generator as a structure with fields
'Type', 'Seed', and 'State'. Use this structure to restore the random number generator to the captured
settings at a later time with gpurng(S).

gpurng(S) restores the state of the random number generator using settings previously captured
with S = gpurng.

S = gpurng( ___ ) returns the current state of the random number generator as a structure before
changing the settings of the seed or generator type.

Examples

Create Predictable Arrays of Random Numbers on the GPU and CPU

Capture the GPU generator settings, and set the state of the CPU random number generator to match
the GPU generator settings. Create predictable arrays of random numbers on the CPU and GPU.

Restore the generator type and seed to their default values on both the CPU and the GPU.
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gpurng('default') 
rng('default')

Save the default seed and generator type of the GPU random number generator.

GPUdef = gpurng

GPUdef = struct with fields:
     Type: 'threefry'
     Seed: 0
    State: [17×1 uint32]

Set the CPU random number generator to match the default GPU settings.

rng(GPUdef) 

Create an array of uniformly distributed random numbers on the GPU.

rGPU = rand(1,10, 'gpuArray')

rGPU =

    0.3640    0.5421    0.6543    0.7436    0.0342    0.8311    0.7040    0.2817    0.1163    0.5671

Create an array of random numbers on the CPU.

rCPU = rand(1,10)

rCPU = 1×10

    0.3640    0.5421    0.6543    0.7436    0.0342    0.8311    0.7040    0.2817    0.1163    0.5671

The seed and generator type are the same for both the GPU and the CPU, so the arrays are the same.

isequal(rGPU,rCPU)

ans = logical
   1

The gpurng state does not save the settings for the transformation applied to generate a normally
distributed set of random numbers. Even though the seed and the generator type are the same on the
GPU and the CPU, the set of normally distributed random numbers is different.

nGPU = randn(1,1000, 'gpuArray');
nCPU = randn(1,1000);

figure
hold on
histogram(nGPU)
histogram(nCPU)
legend('GPU','CPU')
title('Normally Distributed Random Numbers')
xlabel('Value')
ylabel('Count')
hold off
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The statistics of the normal distribution of random numbers are the same on the GPU and the CPU.

By default, the CPU uses the 'Ziggurat' transformation, while the GPU uses the 'BoxMuller'
algorithm for the 'Threefry' generator. The only transformation method supported on both the
CPU and GPU is the 'Inversion' transform.

You can change the transformation method on the GPU using parallel.gpu.RandStream.

Input Arguments
seed — Random number seed
0 (default) | nonnegative integer

Random number seed, specified as a nonnegative integer. The seed specifies the starting point for the
algorithm to generate random numbers. Specify the seed when you want reproducible results. The
default seed is 0.
Example: gpurng(7)

generator — Random number generator
'Threefry' (default) | character vector | string

Random number generator, specified as a character vector or string for any valid random number
generator that supports multiple streams and substreams. Three random number generator
algorithms are supported on the GPU.
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Keyword Generator Multiple Stream and
Substream Support

Approximate Period in
Full Precision

'Threefry' or
'Threefry4x64_20'

Threefry 4x64 generator
with 20 rounds

Yes 2514 (2256 streams of length
2258)

'Philox' or
'Philox4x32_10'

Philox 4x32 generator with
10 rounds

Yes 2193 (264 streams of length
2129)

'CombRecursive' or
'mrg32k3a'

Combined multiple
recursive generator

Yes 2191 (263 streams of length
2127)

The default generator is Threefry.

For more information on the differences between generating random numbers on the GPU and CPU,
see “Control Random Number Streams on Workers” on page 5-29.
Example: gpurng(0,'Philox')

S — Previous random number generator state
structure

Previous random number generator state, specified as a structure previously created using S =
gpurng.
Example: S = gpurng captures the current state of the random number generator, and gpurng(S)
restores the generator to those settings.
Data Types: struct

Output Arguments
S — Random number generator state
structure

Random number generator state, returned as a structure with the fields 'Type', 'Seed', and
'State'.
Example: S = gpurng captures the current state of the random number generator, and gpurng(S)
restores the generator to those settings.
Data Types: struct

Compatibility Considerations
Default random number generator change for gpurng
Behavior changed in R2019a

Starting in R2019a, the default random number generator for parallel computations is changed to
Threefry. This generator offers performance enhancements for parallel calculations over the
previous default. In releases up to R2018b, the default random number generator for parallel
computations is CombRecursive.

With a different default generator, MATLAB generates different random numbers sequences by
default in the context of parallel computations. However, statistics of these calculations remain
unaffected. Therefore, you might want to update any code that relies on the specific random numbers
being generated, but most calculations on the random numbers are unaffected.
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To set the generator to the settings used by default in R2018b and earlier on GPU arrays, use the
following command.

gpurng(0,"CombRecursive")

parallel.gpu.rng is renamed to gpurng
Behavior changed in R2018a

Starting in R2018a, the function parallel.gpu.rng is renamed to gpurng. Replace all instances of
parallel.gpu.rng with gpurng.

parallel.gpu.rng will continue to work but is not recommended.

See Also
gpuArray | parallel.gpu.RandStream | rng

Topics
“Random Number Streams on a GPU” on page 8-6

Introduced in R2011b
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gputimeit
Time required to run function on GPU

Syntax
t = gputimeit(F)
t = gputimeit(F,N)

Description
t = gputimeit(F) measures the typical time (in seconds) required to run the function specified by
the function handle F. The function handle accepts no external input arguments, but can be defined
with input arguments to its internal function call.

t = gputimeit(F,N) calls F to return N output arguments. By default, gputimeit calls the
function F with one output argument, or no output arguments if F does not return any output.

Examples
Measure the time to calculate sum(A.' .* B, 1) on a GPU, where A is a 12000-by-400 matrix and
B is 400-by-12000.

A = rand(12000,400,'gpuArray');
B = rand(400,12000,'gpuArray');
f = @() sum(A.' .* B, 1);
t = gputimeit(f)

0.0026

Compare the time to run svd on a GPU, with one versus three output arguments.

X = rand(1000,'gpuArray');
f = @() svd(X);
t3 = gputimeit(f,3)

1.0622

t1 = gputimeit(f,1)

0.2933

Tips
gputimeit is preferable to timeit for functions that use the GPU, because it ensures that all
operations on the GPU have finished before recording the time and compensates for the overhead.
For operations that do not use a GPU, timeit offers greater precision.

Note the following limitations:

• The function F should not call tic or toc.
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• You cannot use tic and toc to measure the execution time of gputimeit itself.

See Also
gpuArray | wait (GPUDevice)

Introduced in R2013b
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help
Help for toolbox functions in Command Window

Syntax
help class/function

Arguments
class A Parallel Computing Toolbox object class, for example, parallel.cluster,

parallel.job, or parallel.task.
function A function or property of the specified class. To see what functions or

properties are available for a class, see the methods or properties
reference page.

Description
help class/function returns command-line help for the specified function of the given class.

If you do not know the class for the function, use class(obj), where function is of the same class
as the object obj.

Examples
Get help on functions or properties from Parallel Computing Toolbox object classes.

help parallel.cluster/createJob
help parallel.job/cancel
help parallel.task/wait

c = parcluster();
j1 = createJob(c);
class(j1)

parallel.job.CJSIndependentJob

help parallel.job/createTask
help parallel.job/AdditionalPaths

See Also
methods

Introduced before R2006a
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Inf
Array of infinity

Syntax
A = Inf(sz,arraytype)
A = Inf(sz,datatype,arraytype)

A = Inf(sz,'like',P)
A = Inf(sz,datatype,'like',P)

C = Inf(sz,codist)
C = Inf(sz,datatype,codist)
C = Inf(sz, ___ ,codist,'noCommunication')
C = Inf(sz, ___ ,codist,'like',P)

Description
A = Inf(sz,arraytype) creates a matrix with underlying class of double, with Inf values in all
elements.

A = Inf(sz,datatype,arraytype) creates a matrix with underlying class of datatype, with Inf
values in all elements.

The size and type of array are specified by the argument options according to the following table.

Argument Values Descriptions

sz

n Specifies size as an n-by-n matrix.
m,n or [m n] Specifies size as an m-by-n matrix.
m,n,...,k or [m
n ... k]

Specifies size as an m-by-n-by-...-by-k array.

arraytype

'distributed' Specifies distributed array.

'codistributed' Specifies codistributed array, using the default
distribution scheme.

'gpuArray' Specifies gpuArray.

datatype 'double' (default),
'single'

Specifies underlying class of the array, i.e., the data
type of its elements.

A = Inf(sz,'like',P) creates an array of Inf values with the same type and underlying class
(data type) as array P.

A = Inf(sz,datatype,'like',P) creates an array of Inf values with the specified underlying
class (datatype), and the same type as array P.

C = Inf(sz,codist) or C = Inf(sz,datatype,codist) creates a codistributed array of Inf
values with the specified size and underlying class (the default datatype is 'double'). The
codistributor object codist specifies the distribution scheme for creating the codistributed array. For
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information on constructing codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc. To use the default distribution scheme, you can specify a codistributor
constructor without arguments. For example:

spmd
    C = Inf(8,codistributor1d());
end

C = Inf(sz, ___ ,codist,'noCommunication') specifies that no interworker communication is
to be performed when constructing a codistributed array, skipping some error checking steps.

C = Inf(sz, ___ ,codist,'like',P) creates a codistributed array of Inf values with the
specified size, underlying class, and distribution scheme. If either the class or codistributor argument
is omitted, the characteristic is acquired from the codistributed array P.

Examples
Create Distributed Inf Matrix

Create a 1000-by-1000 distributed array of Infs with underlying class double:

D = Inf(1000,'distributed');

Create Codistributed Inf Matrix

Create a 1000-by-1000 codistributed double matrix of Infs, distributed by its second dimension
(columns).

spmd(4)
    C = Inf(1000,'codistributed');
end

With four workers, each worker contains a 1000-by-250 local piece of C.

Create a 1000-by-1000 codistributed single matrix of Infs, distributed by its columns.

spmd(4)
    codist = codistributor('1d',2,100*[1:numlabs]);
    C = Inf(1000,1000,'single',codist);
end

Each worker contains a 100-by-labindex local piece of C.

Create gpuArray Inf Matrix

Create a 1000-by-1000 gpuArray of Infs with underlying class double:

G = Inf(1000,'double','gpuArray');

See Also
Inf | NaN | eye | false | ones | true | zeros
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isaUnderlying
True if distributed array's underlying elements are of specified class

Syntax
TF = isaUnderlying(D, 'classname')

Description
TF = isaUnderlying(D, 'classname') returns true if the elements of distributed or
codistributed array D are either an instance of classname or an instance of a class derived from
classname. isaUnderlying supports the same values for classname as the MATLAB isa function
does.

Examples
N = 1000;
D_uint8  = ones(1,N,'uint8','distributed');
D_cell   = distributed.cell(1,N);
isUint8  = isaUnderlying(D_uint8,'uint8') % returns true
isDouble = isaUnderlying(D_cell,'double') % returns false

See Also
isa

Introduced in R2010a
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iscodistributed
True for codistributed array

Syntax
tf = iscodistributed(X)

Description
tf = iscodistributed(X) returns true for a codistributed array, or false otherwise. For a
description of codistributed arrays, see “Nondistributed Versus Distributed Arrays” on page 4-2.

Examples
With a running parallel pool,

spmd
    L = ones(100,1);
    D = ones(100,1,'codistributed');
    iscodistributed(L) % returns false
    iscodistributed(D) % returns true
end

See Also
isdistributed

Introduced in R2009b
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isComplete
True if codistributor object is complete

Syntax
tf = isComplete(codist)

Description
tf = isComplete(codist) returns true if codist is a completely defined codistributor, or false
otherwise. For a description of codistributed arrays, see “Nondistributed Versus Distributed Arrays”
on page 4-2.

See Also
codistributed | codistributor

Introduced in R2009b
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isdistributed
True for distributed array

Syntax
tf = isdistributed(X)

Description
tf = isdistributed(X) returns true for a distributed array, or false otherwise. For a
description of a distributed array, see “Nondistributed Versus Distributed Arrays” on page 4-2.

Examples
With a running parallel pool,

L = ones(100,1);
D = ones(100,1,'distributed');
isdistributed(L) % returns false
isdistributed(D) % returns true

See Also
iscodistributed

Introduced in R2006b
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isequal
Package: parallel

True if clusters have same property values

Syntax
isequal(C1,C2)
isequal(C1,C2,C3,...)

Description
isequal(C1,C2) returns logical 1 (true) if clusters C1 and C2 have the same property values, or
logical 0 (false) otherwise.

isequal(C1,C2,C3,...) returns true if all clusters are equal. isequal can operate on arrays of
clusters. In this case, the arrays are compared element by element.

When comparing clusters, isequal does not compare the contents of the clusters’ Jobs property.

Examples
Compare clusters after some properties are modified.

c1 = parcluster('local');
c1.NumWorkers = 2;         % Modify cluster
c1.saveAsProfile('local2') % Create new profile
c2 = parcluster('local2'); % Make cluster from new profile
isequal(c1,c2)

1

c0 = parcluster('local')   % Use original profile
isequal(c0,c1)

0

See Also
parcluster

Introduced in R2012a
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isequal
Package: parallel

True if futures have same ID

Syntax
eq = isequal(F1,F2)

Description
eq = isequal(F1,F2) returns logical 1 (true) if futures F1 and F2 have the same ID property
value, or logical 0 (false) otherwise.

Examples
Compare future object in workspace to queued future object.

p = parpool('local',2);
q = p.FevalQueue;
Fp = parfevalOnAll(p,@pause,0,30);
F1 = parfeval(p,@magic,1,10);
F2 = q.QueuedFutures;
isequal(F1,F2)

1

See Also
cancel | fetchNext | fetchOutputs | parfeval | wait

Introduced in R2014a
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isreplicated
True for replicated array

Syntax
tf = isreplicated(X)

Description
tf = isreplicated(X) returns true for a replicated array, or false otherwise. For a description
of a replicated array, see “Nondistributed Versus Distributed Arrays” on page 4-2. isreplicated
also returns true for a Composite X if all its elements are identical.

Examples
With an open parallel pool,

spmd
    A = magic(3);
    t = isreplicated(A) % returns t = true
    B = magic(labindex);
    f = isreplicated(B) % returns f = false
end

Tips
isreplicated(X) requires checking for equality of the array X across all workers. This might
require extensive communication and time. isreplicated is most useful for debugging or error
checking small arrays. A codistributed array is not replicated.

See Also
iscodistributed | isdistributed

Introduced in R2006b
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jobStartup
File for user-defined options to run when job starts

Syntax
jobStartup(job)

Arguments
job The job for which this startup is being executed.

Description
jobStartup(job) runs automatically on a worker the first time that worker evaluates a task for a
particular job. You do not call this function from the client session, nor explicitly as part of a task
function.

You add MATLAB code to the jobStartup.m file to define job initialization actions on the worker.
The worker looks for jobStartup.m in the following order, executing the one it finds first:

1 Included in the job’s AttachedFiles property.
2 In a folder included in the job’s AdditionalPaths property.
3 In the worker’s MATLAB installation at the location

matlabroot/toolbox/parallel/user/jobStartup.m

To create a version of jobStartup.m for AttachedFiles or AdditionalPaths, copy the provided
file and modify it as required. For further details on jobStartup and its implementation, see the text
in the installed jobStartup.m file.

See Also
poolStartup | taskFinish | taskStartup

Introduced before R2006a
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labBarrier
Block execution until all workers reach this call

Syntax
labBarrier

Description
labBarrier blocks execution of a parallel algorithm until all workers have reached the call to
labBarrier. This is useful for coordinating access to shared resources such as file I/O.

Examples
Synchronize Workers for Timing

When timing code execution on the workers, use labBarrier to ensure all workers are synchronized
and start their timed work together.

labBarrier;
tic
    A = rand(1,1e7,'codistributed');
distTime = toc; 

See Also
labBroadcast | labReceive | labSend | labSendReceive

Introduced before R2006a
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labBroadcast
Send data to all workers or receive data sent to all workers

Syntax
shared_data = labBroadcast(srcWkrIdx,data)
shared_data = labBroadcast(srcWkrIdx)

Arguments
srcWkrIdx The labindex of the worker sending the broadcast.
data The data being broadcast. This argument is required only for the

worker that is broadcasting. The absence of this argument indicates
that a worker is receiving.

shared_data The broadcast data as it is received on all other workers.

Description
shared_data = labBroadcast(srcWkrIdx,data) sends the specified data to all executing
workers. The data is broadcast from the worker with labindex == srcWkrIdx, and is received by
all other workers.

shared_data = labBroadcast(srcWkrIdx) receives on each executing worker the specified
shared_data that was sent from the worker whose labindex is srcWkrIdx.

If labindex is not srcWkrIdx, then you do not include the data argument. This indicates that the
function is to receive data, not broadcast it. The received data, shared_data, is identical on all
workers.

This function blocks execution until the worker’s involvement in the collective broadcast operation is
complete. Because some workers may complete their call to labBroadcast before others have
started, use labBarrier if you need to guarantee that all workers are at the same point in a
program.

Examples
In this case, the broadcaster is the worker whose labindex is 1.

srcWkrIdx = 1;
if labindex == srcWkrIdx
  data = randn(10);
  shared_data = labBroadcast(srcWkrIdx,data);
else
  shared_data = labBroadcast(srcWkrIdx);
end

See Also
labBarrier | labSendReceive | labindex
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Introduced before R2006a
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labindex
Index of this worker

Syntax
id = labindex

Description
id = labindex returns the index of the worker currently executing the function. labindex is
assigned to each worker when a job begins execution, and applies only for the duration of that job.
The value of labindex spans from 1 to n, where n is the number of workers running the current job,
defined by numlabs.

Examples
View labindex in spmd blocks and parfor-loops.

p = parpool('local',2);
spmd
    labindex
end

Lab 1: 
         1
  
Lab 2: 
        2

Using the same two-worker pool, p:

parfor a=1:4
    [a,labindex]
end

ans =
     3     1
ans =
     2     1
ans =
     1     1
ans =1
     4     1

Tips
In an spmd block, because you have access to all workers individually and control what gets executed
on them, each worker has a unique labindex.

However, inside a parfor-loop, labindex always returns a value of 1 on all workers in all iterations.
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See Also
labSendReceive | numlabs

Introduced before R2006a
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labProbe
Test to see if messages are ready to be received from other worker

Syntax
isDataAvail = labProbe
isDataAvail = labProbe(srcWkrIdx)
isDataAvail = labProbe('any',tag)
isDataAvail = labProbe(srcWkrIdx,tag)
[isDataAvail,srcWkrIdx,tag] = labProbe

Arguments
srcWkrIdx labindex of a particular worker from which to test for a message.
tag Tag defined by the sending worker’s labSend function to identify

particular data.
'any' Character vector to indicate that all workers should be tested for a

message.
isDataAvail Logical indicating if a message is ready to be received.

Description
isDataAvail = labProbe returns a logical value indicating whether any data is available for this
worker to receive with the labReceive function.

isDataAvail = labProbe(srcWkrIdx) tests for a message only from the specified worker.

isDataAvail = labProbe('any',tag) tests only for a message with the specified tag, from any
worker.

isDataAvail = labProbe(srcWkrIdx,tag) tests for a message from the specified worker and
tag.

[isDataAvail,srcWkrIdx,tag] = labProbe returns labindex of the workers and tags of ready
messages. If no data is available, srcWkrIdx and tag are returned as [].

See Also
labReceive | labSend | labSendReceive | labindex

Introduced before R2006a
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labReceive
Receive data from another worker

Syntax
data = labReceive
data = labReceive(srcWkrIdx)
data = labReceive('any',tag)
data = labReceive(srcWkrIdx,tag)
[data,srcWkrIdx,tag] = labReceive

Arguments
srcWkrIdx labindex of a particular worker from which to receive data.
tag Tag defined by the sending worker’s labSend function to identify

particular data.
'any' Character vector to indicate that data can come from any worker.
data Data sent by the sending worker’s labSend function.

Description
data = labReceive receives data from any worker with any tag.

data = labReceive(srcWkrIdx) receives data from the specified worker with any tag

data = labReceive('any',tag) receives data from any worker with the specified tag.

data = labReceive(srcWkrIdx,tag) receives data from only the specified worker with the
specified tag.

[data,srcWkrIdx,tag] = labReceive returns the source worker labindex and tag with the
data.

Tips
This function blocks execution in the worker until the corresponding call to labSend occurs in the
sending worker.

See Also
labBarrier | labProbe | labSend | labSendReceive | labindex

Introduced before R2006a
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labSend
Send data to another worker

Syntax
labSend(data,rcvWkrIdx)
labSend(data,rcvWkrIdx,tag)

Arguments
data Data sent to the other workers; any MATLAB data type.
rcvWkrIdx labindex of receiving worker or workers.
tag Nonnegative integer to identify data.

Description
labSend(data,rcvWkrIdx) sends the data to the specified destination. data can be any MATLAB
data type. rcvWkrIdx identifies the labindex of the receiving worker, and must be either a scalar
or a vector of integers between 1 and numlabs; it cannot be labindex of the current (sending)
worker.

labSend(data,rcvWkrIdx,tag) sends the data to the specified destination with the specified tag
value. tag can be any integer from 0 to 32767, with a default of 0.

Tips
This function might or might not return before the corresponding labReceive completes in the
receiving worker.

See Also
labBarrier | labProbe | labReceive | labSendReceive | labindex | numlabs

Introduced before R2006a
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labSendReceive
Simultaneously send data to and receive data from another worker

Syntax
dataReceived = labSendReceive(rcvWkrIdx,srcWkrIdx,dataSent)
dataReceived = labSendReceive(rcvWkrIdx,srcWkrIdx,dataSent,tag)

Arguments
dataSent Data on the sending worker that is sent to the receiving worker; any

MATLAB data type.
dataReceived Data accepted on the receiving worker.
rcvWkrIdx labindex of the receiving worker to which data is sent.
srcWkrIdx labindex of the source worker from which data is sent.
tag Nonnegative integer to identify data.

Description
dataReceived = labSendReceive(rcvWkrIdx,srcWkrIdx,dataSent) sends dataSent to the
worker whose labindex is rcvWkrIdx, and receives dataReceived from the worker whose
labindex is srcWkrIdx. The values for arguments rcvWkrIdx and srcWkrIdx must be scalars.
This function is conceptually equivalent to the following sequence of calls:

labSend(dataSent,rcvWkrIdx);
dataReceived = labReceive(srcWkrIdx);

with the important exception that both the sending and receiving of data happens concurrently. This
can eliminate deadlocks that might otherwise occur if the equivalent call to labSend would block.

If rcvWkrIdx is an empty array, labSendReceive does not send data, but only receives. If
srcWkrIdx is an empty array, labSendReceive does not receive data, but only sends.

dataReceived = labSendReceive(rcvWkrIdx,srcWkrIdx,dataSent,tag) uses the specified
tag for the communication. tag can be any integer from 0 to 32767.

Examples
Create a unique set of data on each worker, and transfer each worker’s data one worker to the right
(to the next higher labindex).

First use the magic function to create a unique value for the variant array mydata on each worker.

mydata = magic(labindex)

Lab 1: 
  mydata =
       1
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Lab 2:
  mydata =
       1     3
       4     2
Lab 3:
  mydata =
       8     1     6
       3     5     7
       4     9     2

Define the worker on either side, so that each worker will receive data from the worker on its “left,”
while sending data to the worker on its “right,” cycling data from the end worker back to the
beginning worker.
rcvWkrIdx = mod(labindex, numlabs) + 1; % one worker to the right
srcWkrIdx = mod(labindex - 2, numlabs) + 1; % one worker to the left

Transfer the data, sending each worker’s mydata into the next worker’s otherdata variable,
wrapping the third worker’s data back to the first worker.

otherdata = labSendReceive(rcvWkrIdx,srcWkrIdx,mydata)

Lab 1:
  otherdata =
       8     1     6
       3     5     7
       4     9     2
Lab 2:
  otherdata =
       1
Lab 3: 
  otherdata =
       1     3
       4     2

Transfer data to the next worker without wrapping data from the last worker to the first worker.
if labindex < numlabs; rcvWkrIdx = labindex + 1; else rcvWkrIdx = []; end;
if labindex > 1; srcWkrIdx = labindex - 1; else srcWkrIdx = []; end;
otherdata = labSendReceive(rcvWkrIdx,srcWkrIdx,mydata)

Lab 1:
  otherdata =
       []
Lab 2:
  otherdata =
       1
Lab 3:
  otherdata =
       1     3
       4     2

See Also
labBarrier | labProbe | labReceive | labSend | labindex | numlabs

Introduced in R2006b
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length
Length of object array

Syntax
length(obj)

Arguments
obj An object or an array of objects.

Description
length(obj) returns the length of obj. It is equivalent to the command max(size(obj)).

Examples
Examine how many tasks are in the job j1.

length(j1.Tasks)

ans =
     9

Introduced before R2006a
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listAutoAttachedFiles
List of files automatically attached to job, task, or parallel pool

Syntax
listAutoAttachedFiles(obj)

Description
listAutoAttachedFiles(obj) performs a dependency analysis on all the task functions, or on the
batch job script or function. Then it displays a list of the code files that are already or going to be
automatically attached to the job or task object obj.

If obj is a parallel pool, the output lists the files that have already been attached to the parallel pool
following an earlier dependency analysis. The dependency analysis runs if a parfor or spmd block
errors due to an undefined function. At that point any files, functions, or scripts needed by the
parfor or spmd block are attached if possible.

Examples

Automatically Attach Files via Cluster Profile

Employ a cluster profile to automatically attach code files to a job. Set the AutoAttachFiles
property for a job in the cluster’s profile. If this property value is true, then all jobs you create on that
cluster with this profile will have the necessary code files automatically attached. This example
assumes that the cluster profile myAutoCluster has that setting.

Create batch job, applying your cluster.

obj = batch(myScript,'profile','myAutoCluster');

Verify attached files by viewing list.

listAutoAttachedFiles(obj)

Automatically Attach Files Programmatically

Programmatically set a job to automatically attach code files, and then view a list of those files for
one of the tasks in the job.

c = parcluster(); % Use default profile
j = createJob(c);
j.AutoAttachFiles = true;
obj = createTask(j,myFun,OutNum,ArgCell);
listAutoAttachedFiles(obj) % View attached list
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The files returned in the output listing are those that analysis has determined to be required for the
workers to evaluate the function myFun, and which automatically attach to the job.

Input Arguments
obj — Job, task, or pool to which files automatically attach
job object | task object | parallel pool object

Job, task, or pool to which code files are automatically attached, specified as a parallel.Job,
parallel.Task, or parallel.Pool object. The AutoAttachFiles property of the job object must be
true; if the input is a task object, then this applies to its parent job object.
Example: obj = createJob(cluster);
Example: obj = gcp

See Also
batch | createCommunicatingJob | createJob | createTask | parcluster | parpool

Topics
“Add and Modify Cluster Profiles” on page 5-14

Introduced in R2013a
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load
Package: parallel

Load workspace variables from batch job

Syntax
load(job)
load(job,'X')
load(job,'X','Y','Z*')
load(job,'-regexp','PAT1','PAT2')
S = load(job ...)

Arguments
job Job from which to load workspace variables.
'X' , 'Y', 'Z*' Variables to load from the job. Wildcards allow pattern matching in MAT-file

style.
'-regexp' Indication to use regular expression pattern matching.
S Struct containing the variables after loading.

Description
load(job) retrieves all variables from a batch job and assigns them into the current workspace.
load throws an error if the batch runs a function (instead of a script), the job is not finished, or the
job encountered an error while running, .

load(job,'X') loads only the variable named X from the job.

load(job,'X','Y','Z*') loads only the specified variables. The wildcard '*' loads variables that
match a pattern (MAT-file only).

load(job,'-regexp','PAT1','PAT2') can be used to load all variables matching the specified
patterns using regular expressions. For more information on using regular expressions, type doc
regexp at the command prompt.

S = load(job ...) returns the contents of job into variable S, which is a struct containing fields
matching the variables retrieved.

Examples
Run a batch job and load its results into your client workspace.

j = batch('myScript');
wait(j)
load(j)

Load only variables whose names start with 'a'.
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load(job,'a*')

Load only variables whose names contain any digits.

load(job,'-regexp','\d')

See Also
batch | fetchOutputs

Introduced in R2008a
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logout
Log out of MATLAB Job Scheduler cluster

Syntax
logout(c)

Description
logout(c) logs you out of the MATLAB Job Scheduler cluster specified by cluster object c. Any
subsequent call to a privileged action requires you to re-authenticate with a valid password. Logging
out might be useful when you are finished working on a shared machine.

See Also
changePassword

Introduced in R2012a
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mapreducer
Define parallel execution environment for mapreduce and tall arrays

Syntax
mapreducer
mapreducer(0)
mapreducer(poolobj)
mapreducer(hadoopCluster)
mapreducer(mr)
mr = mapreducer( ___ )
mr = mapreducer( ___ ,'ObjectVisibility','Off')

Description
mapreducer defines the execution environment for mapreduce or tall arrays. Use the mapreducer
function to change the execution environment to use a different cluster or to switch between serial
and parallel development.

The default execution environment uses either the local MATLAB session, or a parallel pool if you
have Parallel Computing Toolbox. If you have Parallel Computing Toolbox installed, when you use the
tall or mapreduce functions, MATLAB automatically starts a parallel pool of workers, unless you
have changed the default preferences. By default, a parallel pool uses local workers, typically one
worker for each core in your machine. If you turn off the Automatically create a parallel pool
option, then you must explicitly start a pool if you want to use parallel resources. See “Specify Your
Parallel Preferences” on page 5-9.

When working with tall arrays, use mapreducer to set the execution environment prior to creating
the tall array. Tall arrays are bound to the current global execution environment when they are
constructed. If you subsequently change the global execution environment, then the tall array is
invalid, and you must recreate it.

Note  In MATLAB, you do not need to specify configuration settings using mapreducer because
mapreduce algorithms and tall array calculations automatically run in the local MATLAB session
only. If you also have Parallel Computing Toolbox, then you can use the additional mapreducer
configuration options listed on this page for running in parallel. If you have MATLAB Compiler, then
you can use separate mapreducer configuration options for running in deployed environments.

See: mapreducer in the MATLAB documentation, or mapreducer in the MATLAB Compiler
documentation.

mapreducer with no input arguments creates a new mapreducer execution environment with all the
defaults and sets this to be the current mapreduce or tall array execution environment. You can use
gcmr to get the current mapreducer configuration.

• If you have default preferences (Automatically create a parallel pool is enabled), and you have
not opened a parallel pool, then mapreducer opens a pool using the default cluster profile, sets
gcmr to a mapreducer based on this pool and returns this mapreducer.
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• If you have opened a parallel pool, then mapreducer sets gcmr to a mapreducer based on the
current pool and returns this mapreducer.

• If you have disabled Automatically create a parallel pool, and you have not opened a parallel
pool, then mapreducer sets gcmr to a mapreducer based on the local MATLAB session, and
mapreducer returns this mapreducer.

mapreducer(0) specifies that mapreduce or tall array calculations run in the MATLAB client
session without using any parallel resources.

mapreducer(poolobj) specifies a parallel pool for parallel execution of mapreduce or tall arrays.
poolobj is a parallel.Pool object. The default pool is the current pool that is returned or opened by
gcp.

mapreducer(hadoopCluster) specifies a Hadoop cluster for parallel execution of mapreduce or
tall arrays. hadoopCluster is a parallel.cluster.Hadoop object.

mapreducer(mr) sets the global execution environment for mapreduce or tall arrays, using a
previously created MapReducer object, mr, if its ObjectVisibility property is 'On'.

mr = mapreducer( ___ ) returns a MapReducer object to specify the execution environment. You
can define several MapReducer objects, which enables you to swap execution environments by
passing one as an input argument to mapreduce or mapreducer.

mr = mapreducer( ___ ,'ObjectVisibility','Off') hides the visibility of the MapReducer
object, mr, using any of the previous syntaxes. Use this syntax to create new MapReducer objects
without affecting the global execution environment of mapreduce.

Examples
Develop in Serial and Then Use Local Workers or Cluster

If you want to develop in serial and not use local workers or your specified cluster, enter:

mapreducer(0);

If you use mapreducer to change the execution environment after creating a tall array, then the tall
array is invalid and you must recreate it. To use local workers or your specified cluster again, enter:

mapreducer(gcp);

mapreducer with Automatically Create a Parallel Pool Switched Off

If you have turned off the Automatically create a parallel pool option, then you must explicitly
start a pool if you want to use parallel resources. See “Specify Your Parallel Preferences” on page 5-9
for details.

The following code shows how you can use mapreducer without input arguments to set the
execution environment to your local MATLAB session and then specify a local parallel pool:

>> mapreducer
>> parpool('local',1);

Starting parallel pool (parpool) using the 'local' profile ... connected to 1 workers.

>> gather(min(tall(rand(1000,1))))
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Evaluating tall expression using the Local MATLAB Session:
Evaluation completed in 0 sec

ans =

   5.2238e-04

Input Arguments
poolobj — Pool for parallel execution
gcp (default) | parallel.Pool object

Pool for parallel execution, specified as a parallel.Pool object.
Example: poolobj = gcp

hadoopCluster — Hadoop cluster for parallel execution
parallel.cluster.Hadoop object

Hadoop cluster for parallel execution, specified as a parallel.cluster.Hadoop object.
Example: hadoopCluster = parallel.cluster.Hadoop

Output Arguments
mr — Execution environment for mapreduce and tall arrays
MapReducer object

Execution environment for mapreduce and tall arrays, returned as a MapReducer object.

If the ObjectVisibility property of mr is set to 'On', then mr defines the default execution
environment for all mapreduce algorithms and tall array calculations. If the ObjectVisibility
property is 'Off', you can pass mr as an input argument to mapreduce to explicitly specify the
execution environment for that particular call.

You can define several MapReducer objects, which enables you to swap execution environments by
passing one as an input argument to mapreduce or mapreducer.

Tips
One of the benefits of developing your algorithms with tall arrays is that you only need to write the
code once. You can develop your code locally, then use mapreducer to scale up and take advantage
of the capabilities offered by Parallel Computing Toolbox, MATLAB Parallel Server, or MATLAB
Compiler, without needing to rewrite your algorithm.

See Also
gcmr | gcp | mapreduce | parallel.cluster.Hadoop | tall

Topics
“Big Data Workflow Using Tall Arrays and Datastores” on page 5-46
“Use Tall Arrays on a Parallel Pool” on page 5-48
“Use Tall Arrays on a Spark Enabled Hadoop Cluster” on page 5-51
“Run mapreduce on a Parallel Pool” on page 5-54
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“Run mapreduce on a Hadoop Cluster” on page 5-57
“Specify Your Parallel Preferences” on page 5-9

Introduced in R2014b
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methods
List functions of object class

Syntax
methods(obj)
out = methods(obj)

Arguments
obj An object or an array of objects.
out Cell array of vectors.

Description
methods(obj) returns the names of all methods for the class of which obj is an instance.

out = methods(obj) returns the names of the methods as a cell array of vectors.

Examples
Create cluster, job, and task objects, and examine what methods are available for each.

c = parcluster();
methods(c)

j1 = createJob(c);
methods(j1)

t1 = createTask(j1,@rand,1,{3});
methods(t1)

See Also
help

Introduced before R2006a
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mexcuda
Compile MEX-function for GPU computation

Syntax
mexcuda filenames
mexcuda
mexcuda option1 ... optionN filenames

Description
mexcuda filenames compiles and links source files into a shared library called a MEX-file,
executable from within MATLAB. The function compiles MEX-files written using the CUDA C++
framework with the NVIDIA nvcc compiler, allowing the files to define and launch GPU kernels. In
addition, the mexcuda function exposes the GPU MEX API to allow the MEX-file to read and write
gpuArrays.

mexcuda is an extension of the MATLAB mex function. Only a subset of the compilers supported by
mex is supported for mexcuda. The supported compilers depend on the CUDA Toolkit version
supported by MATLAB.

mexcuda option1 ... optionN filenames builds with the specified build options. The
option1 ... optionN arguments supplement or override the default mexcuda build configuration.
You can use the most of the options available in mex with mexcuda.

Examples

Compile Simple MEX-Function

Compile a simple MEX-function to create the function myMexFunction from a CUDA C++ source
file.

mexcuda myMexFunction.cu

An example source file is available at matlabroot/toolbox/parallel/gpu/extern/src/mex/
mexGPUExample.cu.

Display Detailed Build and Troubleshooting Information

Use verbose mode to display the compile and link commands and other information useful for
troubleshooting.

mexcuda -v myMexFunction.cu
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Compile and Link Multiple Source Files

Compile and link multiple source files with one command.

mexcuda myMexFunction.cu otherSource1.cpp otherSource2.cpp

Compile and Link in Two Stages

First compile, then link to create a function.

mexcuda -c myMexFunction.cu
mexcuda myMexFunction.obj

The first line compiles to myMexFunction.obj (Windows) or myMexFunction.o (UNIX), and the
second links to create the function myMexFunction.

Compile with Dynamic Parallelism

Compile code that uses dynamic parallelism, defining kernels that launch other kernels.

mexcuda -dynamic myMexFunction.cu

Link to Third-Party Library

Compile a MEX-function that makes use of the CUDA image primitives library, npp, which is installed
at C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\lib\x64\nppi.lib.

mexcuda '-LC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\lib\x64' -lnppi myMexFunction.cu 

Input Arguments
filenames — One or more file names
character vector

One or more file names, including name and file extension, specified as a character vector. If the file
is not in the current folder, specify the full path to the file. File names can be any combination of:

• C or C++ language source files
• object files
• library files

The first source code file listed in filenames is the name of the binary MEX-file. To override this
naming convention, use the '-output' option.
Data Types: char

option1 ... optionN — One or more build options
character vectors corresponding to valid option flags

One or more build options, specified as one of these values. Options can appear in any order on any
platform, except where indicated.
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Most options available for the mex function are supported. In addition, the following options are also
available.

Option Description
-dynamic Dynamic parallelism: compiles MEX-files that define kernels that

launch other kernels.
-G Generate debug information for device code. This makes it possible

to step through kernel code line by line in one of NVIDIA’s
debugging applications (NSight or cuda-gdb). To enable debugging
of host code use -g.

The following mex function option is not supported.

Option Reason
-compatibleArrayDims Use of the MATLAB large-array-handling API is implicit, and cannot

be overridden.

All other options for mex are supported for mexcuda. See the documentation for mex for details.

Tips
• If the CUDA toolkit is not detected or is not a supported version, MATLAB compiles the CUDA

code using the NVIDIA nvcc compiler installed with MATLAB. To check which compiler mexcuda
is using, use the -v flag for verbose output in the mexcuda command.

• The CUDA toolkit installed with MATLAB does not contain all libraries that are available in the
CUDA toolkit. If you want to link a specific library that is not installed with MATLAB, install the
CUDA toolkit. You can check which CUDA toolkit version MATLAB requires using gpuDevice. For
more information about the CUDA Toolkit, see “CUDA Toolkit” on page 8-39.

See Also
mex

Topics
Accessing Advanced CUDA Features Using MEX
“Run MEX-Functions Containing CUDA Code” on page 8-28

Introduced in R2015b
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mpiLibConf
Location of MPI implementation

Syntax
[primaryLib,extras] = mpiLibConf

Arguments
primaryLib MPI implementation library used by a communicating job.
extras Cell array of other required library names.

Description
[primaryLib,extras] = mpiLibConf returns the MPI implementation library to be used by a
communicating job. primaryLib is the name of the shared library file containing the MPI entry
points. extras is a cell array of other library names required by the MPI library.

To supply an alternative MPI implementation, create a file named mpiLibConf.m, and place it on the
MATLAB path. The recommended location is matlabroot/toolbox/parallel/user. Your
mpiLibConf.m file must be higher on the cluster workers' path than matlabroot/toolbox/
parallel/mpi. (Sending mpiLibConf.m as a file dependency for this purpose does not work.) After
your mpiLibConf.m file is in place, update the toolbox path caching with the following command in
MATLAB:

rehash toolboxcache

Examples
Use the mpiLibConf function to view the current MPI implementation library:

mpiLibConf

mpich2.dll

Tips
Under all circumstances, the MPI library must support all MPI-1 functions. Additionally, the MPI
library must support null arguments to MPI_Init as defined in section 4.2 of the MPI-2 standard.
The library must also use an mpi.h header file that is fully compatible with MPICH2.

When used with the MATLAB Job Scheduler or the local cluster, the MPI library must support the
following additional MPI-2 functions:

• MPI_Open_port
• MPI_Comm_accept
• MPI_Comm_connect
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When used with any third-party scheduler, it is important to launch the workers using the version of
mpiexec corresponding to the MPI library being used. Also, you might need to launch the
corresponding process management daemons on the cluster before invoking mpiexec.

See Also
rehash

Topics
“Use Different MPI Builds on UNIX Systems” (MATLAB Parallel Server)
“Toolbox Path Caching in MATLAB” (MATLAB)

Introduced before R2006a
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mpiprofile
Profile parallel communication and execution times

Syntax
mpiprofile
mpiprofile on <options>
mpiprofile off
mpiprofile reset
mpiprofile viewer
mpiprofile resume
mpiprofile clear
mpiprofile status
stats = mpiprofile('info')
mpiprofile('viewer',stats)

Description
mpiprofile enables or disables the parallel profiler data collection on a MATLAB worker running in
a parallel pool. You can use mpiprofile either from the MATLAB client or directly from the worker
from within an spmd block. When you run mpiprofile from the MATLAB client, mpiprofile
performs the action on the MATLAB workers.

mpiprofile aggregates statistics on execution time and communication times. mpiprofile collects
statistics in a manner similar to running the profile command on each MATLAB worker. By default,
the parallel profiling extensions include array fields that collect information on communication with
each of the other workers.

mpiprofile on <options> starts the parallel profiler and clears previously recorded profile
statistics.

mpiprofile takes the following options.
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Option Description
-messagedetail default

-messagedetail simplified

-messagedetail off

This option specifies the detail at which
communication information is stored.

-messagedetail default collects information on
a per-worker instance.

-messagedetail simplified turns off collection
for *PerLab data fields, which reduces the profiling
overhead. If you have a very large cluster, you might
want to use this option; however, you will not get all
the detailed inter-worker communication plots in the
viewer.

Note that changing -messagedetail will clear any
previously stored data.

For information about the structure of returned data,
see mpiprofile info below.

-history

-nohistory

-historysize <size>

mpiprofile supports these options in the same way
as the standard profile.

No other profile options are supported by
mpiprofile. These three options have no effect on
the data displayed by mpiprofile viewer.

mpiprofile off stops the parallel profiler. To reset the state of the profiler and disable collecting
communication information, use mpiprofile reset.

mpiprofile reset turns off the parallel profiler and resets the data collection back to the standard
profiler. If you do not call reset, subsequent profile commands will collect MPI information.

mpiprofile viewer stops the profiler and opens the graphical profile browser with parallel
options. The output is an HTML report displayed in the profiler window. The file listing at the bottom
of the function profile page shows several columns to the left of each line of code. In the summary
page:

• Column 1 indicates the number of calls to that line.
• Column 2 indicates total time spent on the line in seconds.
• Columns 3–6 contain the communication information specific to the parallel profiler.

mpiprofile resume restarts the profiler without clearing previously recorded function statistics.

mpiprofile clear clears the profile information.

mpiprofile status returns the status of the parallel profiler.

stats = mpiprofile('info') stops the parallel profiler and returns a structure containing the
profiler statistics. stats contains the same fields as returned by profile('info'), with the
following additional fields in the FunctionTable entry. All these fields are recorded on a per-
function and per-line basis, except for the *PerLab fields.
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Field Description
BytesSent Records the quantity of data sent
BytesReceived Records the quantity of data received
TimeWasted Records communication waiting time
CommTime Records the communication time
CommTimePerLab Vector of communication receive time for each worker
TimeWastedPerLab Vector of communication waiting time for each worker
BytesReceivedPerLab Vector of data received from each worker

The three *PerLab fields are collected only on a per-function basis, and you can turn them off by
typing the following command:

mpiprofile on -messagedetail simplified

When you run it from the MATLAB client, stats = mpiprofile('info') returns information from
all workers. When you run it on a worker, mpiprofile('info') returns the profile information
specific to that worker.

mpiprofile('viewer',stats) opens the graphical profile browser showing the profiling
information contained in stats. You can use stats = mpiprofile('info') on the client to
create the structure array.

mpiprofile does not accept -timer clock options, because the communication timer clock must
be real.

For more information and examples on using the parallel profiler, see “Profiling Parallel Code” on
page 5-32.

Examples

Profile Parallel Code

Turn on the profiler. With default preferences, turning on the profiler will create a parallel pool
automatically if there is not one already created.

mpiprofile on

Run your parallel code.

A = rand(1000,'distributed');
b = sum(A, 2);
x = A\b;

Show the collected profile information.

mpiprofile viewer
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Analyze Parallel Profiler Data

The parallel profiler collects information about the execution of code on each worker and the
communications between the workers. After you profile your parallel code with mpiprofile, start
the graphical viewer by calling mpiprofile viewer.

R = rand(1e3,'distributed');
mpiprofile on
R = R*R;
mpiprofile viewer

The viewer has three types of pages or views.

The parallel profile viewer, opens with the Function Summary Report first, in the same way as the
standard profiler. In this view you can see profile information from any single lab or from multiple
labs simultaneously. It initially shows all functions executed on lab 1. You can then choose via the
listbox options to see profiling information from any lab.

In this view you can see Aggregate information using the Manual Comparison Selection listboxes.
When you select an Aggregate in this view, the profiler accumulates and displays the specified data
about all of the executed functions. For example,

• max Time Aggregate lists every function called in the program, and for each function, the data
from the lab that spent the most time executing it.

• min Time >0 Aggregate lists every function called in the program, and for each function, the
statistics from the lab that spent the least time executing it.

Here are a few things to keep in mind in this view:

• To re-sort the table by a different field simply click the related column title (e.g. Total Comm
Time).

• To select a function and go to the Function Detail Report, click any function name that appears in
the Function Name column.

• To compare profiling information from different labs, use the Comparison listboxes and buttons
(found in the top of each page). Comparison information always displays in a maroon color font.

• To find which lab the main profiling data (black or blue text) comes from, look at the orange
highlighted text at the top of the displayed page or in the top toolbar.

The Function Detail Report displays information on the individual lines executed inside the current
function for each lab. This includes a Busy Lines table which can be used to compare the top five
lines of code on different labs. This report is only fully functional if the profiled MATLAB files are
available on the client MATLAB path.
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The Function Detail Report is different from the Function Summary Report in several ways:

• The report is generated for one function at a time. The function name is displayed at the top of the
page, in green or orange. Green highlighting indicates that the function spent very little (or no)
time in communication. Orange highlighting indicates more than 20% of the time was spent in
communication or waiting for communication.

• Every listbox option takes into account the last function you clicked. The current function can be
changed, if need be, by clicking the Home button in the top toolbar, which also takes you back to
the Function Summary Report.

• Profile information Aggregates from multiple labs are calculated only on a per function basis.
Therefore in the Function Detail Report, selecting max Time Aggregate displays information
from the one lab that took longest executing the current function.

• Comparisons of profiling information are only available in the top five lines shown in the Busy
Lines table (the first table from the top unless there is a parents table).

The Plot View is shown whenever you click a plot option in the Show Figures listbox. The plots
show communication and timing information from all the labs for the given function. There are two
types of plots (Histograms and Per Worker Images). The Plot Time Histograms and Plot All Per
Worker Communication options show three figures using the corresponding communication fields
returned by the mpiprofile info command.

• Plot Time Histograms shows histograms for Total Time, Total Communication Time, and
Communication Waiting Time.

• Plot All Per Worker Communication shows 2D color coded image plots for Data Received,
Receive Communication Time, and Communication Waiting Time.

• The Plot Communication Time Per Worker option in the Show Figures listbox shows only the
Receive Communication Time chart and therefore is faster to generate.

Plotting Per Function or Per Session

There are two modes for the plots:

• Overall session plots: If you are in the Function Summary Report and you have not selected any
function the plots are generated for all code executed (with the profiler on).

• Per function plots : If you are in the Function Detail Report after having selected a function,
clicking any of the available plots (in the listbox shown below) will take you to the function specific
Plot View.

You can always tell which plot mode you are using by looking at the titles of each figure. The titles
show the name of the current function (or all functions when showing data for the entire session).
The titles also include the name of the profiling field being displayed (e.g., Communication Time,
Total Time). If you want to see the data for the entire profiling session after having selected a specific
function, click Home to go back to the Function Summary Report then select your desired plot (using
the listbox shown below).
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See Also
mpiSettings | profile

Topics
“Profile Parallel Code”

Introduced in R2007b
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mpiSettings
Configure options for MPI communication

Syntax
mpiSettings('DeadlockDetection','on')
mpiSettings('MessageLogging','on')
mpiSettings('MessageLoggingDestination','CommandWindow')
mpiSettings('MessageLoggingDestination','stdout')
mpiSettings('MessageLoggingDestination','File','filename')

Description
mpiSettings('DeadlockDetection','on') turns on deadlock detection during calls to labSend
and labReceive. If deadlock is detected, a call to labReceive might cause an error. Although it is
not necessary to enable deadlock detection on all workers, this is the most useful option. The default
value is 'off' for communicating jobs, and 'on' inside spmd statements. Once the setting has been
changed within an spmd statement, the setting stays in effect until the parallel pool is closed.

If you are using a large number of workers, you might experience a performance increase by
disabling deadlock detection.

If some workers do not call labSend or labReceive for long periods of times, deadlock detection
can cause communication errors. If you encounter errors, try disabling deadlock detection.

mpiSettings('MessageLogging','on') turns on MPI message logging. The default is 'off'.
The default destination is the MATLAB Command Window.

mpiSettings('MessageLoggingDestination','CommandWindow') sends MPI logging
information to the MATLAB Command Window. If the task within a communicating job is set to
capture Command Window output, the MPI logging information will be present in the task's
CommandWindowOutput property.

mpiSettings('MessageLoggingDestination','stdout') sends MPI logging information to
the standard output for the MATLAB process. If you are using a MATLAB Job Scheduler, this is the
mjs service log file.

mpiSettings('MessageLoggingDestination','File','filename') sends MPI logging
information to the specified file.

Examples
Set deadlock detection for a communicating job inside the jobStartup.m file for that job:
    % Inside jobStartup.m for the communicating job
    mpiSettings('DeadlockDetection','on');
    myLogFname = sprintf('%s_%d.log',tempname,labindex);
    mpiSettings('MessageLoggingDestination','File',myLogFname);
    mpiSettings('MessageLogging','on');

Turn off deadlock detection for all subsequent spmd statements that use the same parallel pool:
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spmd;mpiSettings('DeadlockDetection','off');end

Tips
Setting the MessageLoggingDestination does not automatically enable message logging. A
separate call is required to enable message logging.

mpiSettings has to be called on the worker, not the client. That is, it should be called within the
task function, within jobStartup.m, or within taskStartup.m.

Introduced before R2006a
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mxGPUCopyFromMxArray (C)
Copy mxArray to mxGPUArray

C Syntax
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCopyFromMxArray(mxArray const * const mp)

Arguments
mp

Pointer to an mxArray that contains either GPU or CPU data.

Returns
Pointer to an mxGPUArray.

Description
mxGPUCopyFromMxArray produces a new mxGPUArray object with the same characteristics as the
input mxArray.

• If the input mxArray contains a gpuArray, the output is a new copy of the data on the GPU.
• If the input mxArray contains numeric or logical CPU data, the output is copied to the GPU.

Either way, this function always allocates memory on the GPU and allocates a new mxGPUArray
object on the CPU. Use mxGPUDestroyGPUArray to delete the result when you are done with it.

See Also
mxGPUCopyGPUArray | mxGPUDestroyGPUArray

Introduced in R2013a
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mxGPUCopyGPUArray (C)
Duplicate (deep copy) mxGPUArray object

C Syntax
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCopyGPUArray(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray.

Returns
Pointer to an mxGPUArray.

Description
mxGPUCopyGPUArray produces a new array on the GPU and copies the data, and then returns a new
mxGPUArray that refers to the copy. Use mxGPUDestroyGPUArray to delete the result when you are
done with it.

See Also
mxGPUCopyFromMxArray | mxGPUDestroyGPUArray

Introduced in R2013a
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mxGPUCopyImag (C)
Copy imaginary part of mxGPUArray

C Syntax
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCopyImag(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray. The target gpuArray must be full, not sparse.

Returns
Pointer to an mxGPUArray.

Description
mxGPUCopyImag copies the imaginary part of GPU data, and returns a new mxGPUArray object that
refers to the copy. The returned array is real, with element values equal to the imaginary values of
the input, similar to how the MATLAB imag function behaves. If the input is real rather than complex,
the function returns an array of zeros.

Use mxGPUDestroyGPUArray to delete the result when you are done with it.

See Also
mxGPUCopyReal | mxGPUDestroyGPUArray

Introduced in R2013a
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mxGPUCopyReal (C)
Copy real part of mxGPUArray

C Syntax
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCopyReal(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray. The target gpuArray must be full, not sparse.

Returns
Pointer to an mxGPUArray.

Description
mxGPUCopyReal copies the real part of GPU data, and returns a new mxGPUArray object that refers
to the copy. If the input is real rather than complex, the function returns a copy of the input.

Use mxGPUDestroyGPUArray to delete the result when you are done with it.

See Also
mxGPUCopyImag | mxGPUDestroyGPUArray

Introduced in R2013a
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mxGPUCreateComplexGPUArray (C)
Create complex GPU array from two real gpuArrays

C Syntax
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCreateComplexGPUArray(mxGPUArray const * const mgpR,
                                       mxGPUArray const * const mgpI)

Arguments
mgpRmgpI

Pointers to mxGPUArray data containing real and imaginary coefficients. The target gpuArrays
must be full, not sparse.

Returns
Pointer to an mxGPUArray.

Description
mxGPUCreateComplexGPUArray creates a new complex mxGPUArray from two real mxGPUArray
objects. The function allocates memory on the GPU and copies the data. The inputs must both be real,
and have matching sizes and classes. Use mxGPUDestroyGPUArray to delete the result when you are
done with it.

See Also
mxGPUDestroyGPUArray

Introduced in R2013a
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mxGPUCreateFromMxArray (C)
Create read-only mxGPUArray object from input mxArray

C Syntax
#include "gpu/mxGPUArray.h"
mxGPUArray const * mxGPUCreateFromMxArray(mxArray const * const mp)

Arguments
mp

Pointer to an mxArray that contains either GPU or CPU data.

Returns
Pointer to a read-only mxGPUArray object.

Description
mxGPUCreateFromMxArray produces a read-only mxGPUArray object from an mxArray.

• If the input mxArray contains a gpuArray, this function extracts a reference to the GPU data
from an mxArray passed as an input to the function.

• If the input mxArray contains CPU data, the data is copied to the GPU, but the returned object is
still read-only.

If you need a writable copy of the array, use mxGPUCopyFromMxArray instead.

This function allocates a new mxGPUArray object on the CPU. Use mxGPUDestroyGPUArray to
delete the result when you are done with it.

See Also
mxGPUCopyFromMxArray | mxGPUCreateGPUArray | mxGPUDestroyGPUArray

Introduced in R2013a
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mxGPUCreateGPUArray (C)
Create mxGPUArray object, allocating memory on GPU

C Syntax
#include "gpu/mxGPUArray.h"
mxGPUArray* mxGPUCreateGPUArray(mwSize const ndims,
                                mwSize const * const dims,
                                mxClassID const cid,
                                mxComplexity const ccx,
                                mxGPUInitialize const init0)

Arguments
ndims

mwSize type specifying the number of dimensions in the created mxGPUArray.
dims

Pointer to an mwSize vector specifying the sizes of each dimension in the created mxGPUArray.
cid

mxClassID type specifying the element class of the created mxGPUArray.
ccx

mxComplexity type specifying the complexity of the created mxGPUArray.
init0

mxGPUInitialize type specifying whether to initialize elements values to 0 in the created
mxGPUArray.

• A value of MX_GPU_INITIALIZE_VALUES specifies that elements are to be initialized to 0.
• A value of MX_GPU_DO_NOT_INITIALIZE specifies that elements are not to be initialized.

Returns
Pointer to an mxGPUArray.

Description
mxGPUCreateGPUArray creates a new mxGPUArray object with the specified size, type, and
complexity. It also allocates the required memory on the GPU, and initializes the memory if requested.

This function allocates a new mxGPUArray object on the CPU. Use mxGPUDestroyGPUArray to
delete the object when you are done with it.

See Also
mxGPUCreateFromMxArray | mxGPUDestroyGPUArray
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Introduced in R2013a

10 Functions

10-200



mxGPUCreateMxArrayOnCPU (C)
Create mxArray for returning CPU data to MATLAB with data from GPU

C Syntax
#include "gpu/mxGPUArray.h"
mxArray* mxGPUCreateMxArrayOnCPU(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray.

Returns
Pointer to an mxArray object containing CPU data that is a copy of the GPU data.

Description
mxGPUCreateMxArrayOnCPU copies the GPU data from the specified mxGPUArray into an mxArray
on the CPU for return to MATLAB. This is similar to the gather function. After calling this function,
the input mxGPUArray object is no longer needed and you can delete it with
mxGPUDestroyGPUArray.

See Also
mxGPUCreateMxArrayOnGPU | mxGPUDestroyGPUArray

Introduced in R2013a
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mxGPUCreateMxArrayOnGPU (C)
Create mxArray for returning GPU data to MATLAB

C Syntax
#include "gpu/mxGPUArray.h"
mxArray* mxGPUCreateMxArrayOnGPU(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray.

Returns
Pointer to an mxArray object containing GPU data.

Description
mxGPUCreateMxArrayOnGPU puts the mxGPUArray into an mxArray for return to MATLAB. The
data remains on the GPU and the returned class in MATLAB is gpuArray. After this call, the
mxGPUArray object is no longer needed and can be destroyed.

See Also
mxGPUCreateMxArrayOnCPU | mxGPUDestroyGPUArray

Introduced in R2013a
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mxGPUDestroyGPUArray (C)
Delete mxGPUArray object

C Syntax
#include "gpu/mxGPUArray.h"
mxGPUDestroyGPUArray(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray.

Description
mxGPUDestroyGPUArray deletes an mxGPUArray object on the CPU. Use this function to delete an
mxGPUArray object you created with:

• mxGPUCreateGPUArray
• mxGPUCreateFromMxArray
• mxGPUCopyFromMxArray
• mxGPUCopyReal
• mxGPUCopyImag, or
• mxGPUCreateComplexGPUArray.

This function clears memory on the GPU, unless some other mxArray holds a reference to the same
data. For example, if the mxGPUArray was extracted from an input mxArray, or wrapped in an
mxArray for an output, then the data remains on the GPU.

See Also
mxGPUCopyFromMxArray | mxGPUCopyImag | mxGPUCopyReal | mxGPUCreateComplexGPUArray |
mxGPUCreateFromMxArray | mxGPUCreateGPUArray

Introduced in R2013a
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mxGPUGetClassID (C)
mxClassID associated with data on GPU

C Syntax
#include "gpu/mxGPUArray.h"
mxClassID mxGPUGetClassID(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray.

Returns
mxClassID type.

Description
mxGPUGetClassID returns an mxClassID type indicating the underlying class of the input data.

See Also
mxGPUGetComplexity

Introduced in R2013a
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mxGPUGetComplexity (C)
Complexity of data on GPU

C Syntax
#include "gpu/mxGPUArray.h"
mxComplexity mxGPUGetComplexity(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray.

Returns
mxComplexity type.

Description
mxGPUGetComplexity returns an mxComplexity type indicating the complexity of the GPU data.

See Also
mxGPUGetClassID

Introduced in R2013a

 mxGPUGetComplexity (C)

10-205



mxGPUGetData (C)
Raw pointer to underlying data

C Syntax
#include "gpu/mxGPUArray.h"
void* mxGPUGetData(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray on the GPU. The target gpuArray must be full, not sparse.

Returns
Pointer to data.

Description
mxGPUGetData returns a raw pointer to the underlying data. Cast this pointer to the type of data that
you want to use on the device. It is your responsibility to check that the data inside the array has the
appropriate type, for which you can use mxGPUGetClassID.

See Also
mxGPUGetClassID | mxGPUGetDataReadOnly

Introduced in R2013a
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mxGPUGetDataReadOnly (C)
Read-only raw pointer to underlying data

C Syntax
#include "gpu/mxGPUArray.h"
void const* mxGPUGetDataReadOnly(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray on the GPU. The target gpuArray must be full, not sparse.

Returns
Read-only pointer to data.

Description
mxGPUGetDataReadOnly returns a read-only raw pointer to the underlying data. Cast it to the type
of data that you want to use on the device. It is your responsibility to check that the data inside the
array has the appropriate type, for which you can use mxGPUGetClassID.

See Also
mxGPUGetClassID | mxGPUGetData

Introduced in R2013a
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mxGPUGetDimensions (C)
mxGPUArray dimensions

C Syntax
#include "gpu/mxGPUArray.h"
mwSize const * mxGPUGetDimensions(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray.

Returns
Pointer to a read-only array of mwSize type.

Description
mxGPUGetDimensions returns a pointer to an array of mwSize indicating the dimensions of the
input argument. Use mxFree to delete the output.

See Also
mxGPUGetComplexity | mxGPUGetNumberOfDimensions

Introduced in R2013a
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mxGPUGetNumberOfDimensions (C)
Size of dimension array for mxGPUArray

C Syntax
#include "gpu/mxGPUArray.h"
mwSize mxGPUGetNumberOfDimensions(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray.

Returns
mwSize type.

Description
mxGPUGetNumberOfDimensions returns the size of the dimension array for the mxGPUArray input
argument, indicating the number of its dimensions.

See Also
mxGPUGetComplexity | mxGPUGetDimensions

Introduced in R2013a
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mxGPUGetNumberOfElements (C)
Number of elements on GPU for array

C Syntax
#include "gpu/mxGPUArray.h"
mwSize mxGPUGetNumberOfElements(mxGPUArray const * const mgp)

Arguments
mgp

Pointer to an mxGPUArray.

Returns
mwSize type.

Description
mxGPUGetNumberOfElements returns the total number of elements on the GPU for this array.

See Also
mxGPUGetComplexity | mxGPUGetDimensions | mxGPUGetNumberOfDimensions

Introduced in R2013a
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mxGPUIsSame (C)
Determine if two mxGPUArrays refer to same GPU data

C Syntax
#include "gpu/mxGPUArray.h"
int mxGPUIsSame(mxGPUArray const * const mgp1, 
                 mxGPUArray const * const mgp2)

Arguments
mgp1mgp2

Pointers to mxGPUArray.

Returns
int type.

Description
mxGPUIsSame returns an integer indicating if two mxGPUArray pointers refer to the same GPU data:

• 1 (true) indicates that the inputs refer to the same data.
• 0 (false) indicates that the inputs do not refer to the same data.

See Also
mxGPUIsValidGPUData

Introduced in R2013a
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mxGPUIsSparse (C)
Determine if mxGPUArray contains sparse GPU data

C Syntax
#include "gpu/mxGPUArray.h"
int mxGPUIsSparse(mxGPUArray const * mp);

Arguments
mp

Pointer to an mxGPUArray to be queried for sparse data.

Returns
Integer indicating true result:

• 1 indicates the input is a sparse gpuArray.
• 0 indicates the input is not a sparse gpuArray.

See Also
mxGPUIsValidGPUData | mxIsGPUArray

Introduced in R2015a
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mxGPUIsValidGPUData (C)
Determine if mxArray is pointer to valid GPU data

C Syntax
#include "gpu/mxGPUArray.h"
int mxGPUIsValidGPUData(mxArray const * const mp)

Arguments
mgp

Pointer to an mxArray.

Returns
int type.

Description
mxGPUIsValidGPUData indicates if the mxArray is a pointer to valid GPU data

If the GPU device is reinitialized in MATLAB with gpuDevice, all data on the device becomes invalid,
but the CPU data structures that refer to the GPU data still exist. This function checks whether the
mxArray is a container of valid GPU data, and returns one of the following values:

• 0 (false) for CPU data or for invalid GPU data.
• 1 (true) for valid GPU data.

See Also
mxIsGPUArray

Introduced in R2013a
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mxGPUSetDimensions (C)
Modify number of dimensions and size of each dimension

C Syntax
#include "gpu/mxGPUArray.h"
void mxGPUSetDimensions(mxGPUArray * const mgp, mwSize const * const dims, mwSize const ndims);

Arguments
mgp

Pointer to an mxGPUArray
dims

Dimensions array. Each element in the dimensions array contains the size of the array in that
dimension. For example, in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxGPUArray.

The dims array must not increase the overall size of the mxGPUArray. This array must contain at
least ndims elements.

ndims
Number of dimensions.

Description
Call mxGPUSetDimensions to reshape an existing mxGPUArray. mxGPUSetDimensions does not
reallocate memory.

See Also
mxGPUGetDimensions (C)

Introduced in R2018b
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mxInitGPU (C)
Initialize MATLAB GPU library on currently selected device

C Syntax
#include "gpu/mxGPUArray.h"
 int mxInitGPU()

Returns
int type with one of the following values:

• MX_GPU_SUCCESS if the MATLAB GPU library is successfully initialized.
• MX_GPU_FAILURE if not successfully initialized.

Description
Before using any CUDA code in your MEX file, initialize the MATLAB GPU library if you intend to use
any mxGPUArray functionality in MEX or any GPU calls in MATLAB. There are many ways to initialize
the MATLAB GPU API, including:

• Call mxInitGPU at the beginning of your MEX file before any CUDA code.
• Call gpuDevice(deviceIndex) in MATLAB before running any MEX code.
• Create a gpuArray in MATLAB before running any MEX code.

You should call mxInitGPU at the beginning of your MEX file, unless you have an alternate way of
guaranteeing that the MATLAB GPU library is initialized at the start of your MEX file.

If the library is initialized, this function returns without doing any work. If the library is not
initialized, the function initializes the default device. Note: At present, a MATLAB MEX file can work
with only one GPU device at a time.

See Also
gpuArray | gpuDevice

Introduced in R2013a
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mxIsGPUArray (C)
Determine if mxArray contains GPU data

C Syntax
#include "gpu/mxGPUArray.h"
int mxIsGPUArray(mxArray const * const mp);

Arguments
mp

Pointer to an mxArray that might contain gpuArray data.

Returns
Integer indicating true result:

• 1 indicates the input is a gpuArray.
• 0 indicates the input is not a gpuArray.

See Also
mxGPUIsSparse | mxGPUIsValidGPUData

Introduced in R2013a
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NaN
Array of Not-a-Numbers

Syntax
A = NaN(sz,arraytype)
A = NaN(sz,datatype,arraytype)

A = NaN(sz,'like',P)
A = NaN(sz,datatype,'like',P)

C = NaN(sz,codist)
C = NaN(sz,datatype,codist)
C = NaN(sz, ___ ,codist,'noCommunication')
C = NaN(sz, ___ ,codist,'like',P)

Description
A = NaN(sz,arraytype) creates a matrix with underlying class of double, with NaN values in all
elements.

A = NaN(sz,datatype,arraytype) creates a matrix with underlying class of datatype, with NaN
values in all elements.

The size and type of array are specified by the argument options according to the following table.

Argument Values Descriptions

sz

n Specifies size as an n-by-n matrix.
m,n or [m n] Specifies size as an m-by-n matrix.
m,n,...,k or [m
n ... k]

Specifies size as an m-by-n-by-...-by-k array.

arraytype

'distributed' Specifies distributed array.

'codistributed' Specifies codistributed array, using the default
distribution scheme.

'gpuArray' Specifies gpuArray.

datatype 'double' (default),
'single'

Specifies underlying class of the array, i.e., the data
type of its elements.

A = NaN(sz,'like',P) creates an array of NaN values with the same type and underlying class
(data type) as array P.

A = NaN(sz,datatype,'like',P) creates an array of NaN values with the specified underlying
class (datatype), and the same type as array P.

C = NaN(sz,codist) or C = NaN(sz,datatype,codist) creates a codistributed array of NaN
values with the specified size and underlying class (the default datatype is 'double'). The
codistributor object codist specifies the distribution scheme for creating the codistributed array. For
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information on constructing codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc. To use the default distribution scheme, you can specify a codistributor
constructor without arguments. For example:

spmd
    C = NaN(8,codistributor1d());
end

C = NaN(sz, ___ ,codist,'noCommunication') specifies that no interworker communication is
to be performed when constructing a codistributed array, skipping some error checking steps.

C = NaN(sz, ___ ,codist,'like',P) creates a codistributed array of NaN values with the
specified size, underlying class, and distribution scheme. If either the class or codistributor argument
is omitted, the characteristic is acquired from the codistributed array P.

Examples
Create Distributed NaN Matrix

Create a 1000-by-1000 distributed matrix of NaNs with underlying class double:

D = NaN(1000,'distributed');

Create Codistributed NaN Matrix

Create a 1000-by-1000 codistributed double matrix of NaNs, distributed by its second dimension
(columns).

spmd(4)
    C = NaN(1000,'codistributed');
end

With four workers, each worker contains a 1000-by-250 local piece of C.

Create a 1000-by-1000 codistributed single matrix of NaNs, distributed by its columns.
spmd(4)
    codist = codistributor('1d',2,100*[1:numlabs]);
    C = NaN(1000,1000,'single',codist);
end

Each worker contains a 100-by-labindex local piece of C.

Create gpuArray NaN Matrix

Create a 1000-by-1000 gpuArray of NaNs with underlying class double:

G = NaN(1000,'double','gpuArray');

See Also
Inf | NaN | eye | false | ones | true | zeros

Introduced in R2006b
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numlabs
Total number of workers operating in parallel on current job

Syntax
n = numlabs

Description
n = numlabs returns the total number of workers currently operating on the current job. This value
is the maximum value that can be used with labSend and labReceive.

Tips
In an spmd block, numlabs on each worker returns the parallel pool size.

However, inside a parfor-loop, numlabs always returns a value of 1.

See Also
labSendReceive | labindex

Introduced before R2006a
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ones
Array of ones

Syntax
N = ones(sz,arraytype)
N = ones(sz,datatype,arraytype)

N = ones(sz,'like',P)
N = ones(sz,datatype,'like',P)

C = ones(sz,codist)
C = ones(sz,datatype,codist)
C = ones(sz, ___ ,codist,'noCommunication')
C = ones(sz, ___ ,codist,'like',P)

Description
N = ones(sz,arraytype) creates a matrix with underlying class of double, with ones in all
elements.

N = ones(sz,datatype,arraytype) creates a matrix with underlying class of datatype, with
ones in all elements.

The size and type of array are specified by the argument options according to the following table.

Argument Values Descriptions

sz

n Specifies size as an n-by-n matrix.
m,n or [m n] Specifies size as an m-by-n matrix.
m,n,...,k or [m
n ... k]

Specifies size as an m-by-n-by-...-by-k array.

arraytype

'distributed' Specifies distributed array.

'codistributed' Specifies codistributed array, using the default
distribution scheme.

'gpuArray' Specifies gpuArray.

datatype

'double' (default),
'single', 'int8',
'uint8', 'int16',
'uint16', 'int32',
'uint32', 'int64',
or 'uint64'

Specifies underlying class of the array, i.e., the data
type of its elements.

N = ones(sz,'like',P) creates an array of ones with the same type and underlying class (data
type) as array P.

N = ones(sz,datatype,'like',P) creates an array of ones with the specified underlying class
(datatype), and the same type as array P.
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C = ones(sz,codist) or C = ones(sz,datatype,codist) creates a codistributed array of
ones with the specified size and underlying class (the default datatype is 'double'). The
codistributor object codist specifies the distribution scheme for creating the codistributed array. For
information on constructing codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc. To use the default distribution scheme, you can specify a codistributor
constructor without arguments. For example:

spmd
    C = ones(8,codistributor1d());
end

C = ones(sz, ___ ,codist,'noCommunication') specifies that no interworker communication
is to be performed when constructing a codistributed array, skipping some error checking steps.

C = ones(sz, ___ ,codist,'like',P) creates a codistributed array of ones with the specified
size, underlying class, and distribution scheme. If either the class or codistributor argument is
omitted, the characteristic is acquired from the codistributed array P.

Examples
Create Distributed Ones Matrix

Create a 1000-by-1000 distributed array of ones with underlying class double:

D = ones(1000,'distributed');

Create Codistributed Ones Matrix

Create a 1000-by-1000 codistributed double matrix of ones, distributed by its second dimension
(columns).

spmd(4)
    C = ones(1000,'codistributed');
end

With four workers, each worker contains a 1000-by-250 local piece of C.

Create a 1000-by-1000 codistributed uint16 matrix of ones, distributed by its columns.
spmd(4)
    codist = codistributor('1d',2,100*[1:numlabs]);
    C = ones(1000,1000,'uint16',codist);
end

Each worker contains a 100-by-labindex local piece of C.

Create gpuArray Ones Matrix

Create a 1000-by-1000 gpuArray of ones with underlying class uint32:

G = ones(1000,'uint32','gpuArray');

See Also
Inf | NaN | eye | false | ones | true | zeros
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pagefun
Apply function to each page of array on GPU

Syntax
A = pagefun(FUN,B)
A = pagefun(FUN,B,C,...)
[A,B,...] = pagefun(FUN,C,...)

Description
pagefun iterates over the pages of a gpuArray, applying the same function to each page.

A = pagefun(FUN,B) applies the function specified by FUN to each page of the gpuArray B, and
returns the results in gpuArray A, such that A(:,:,I,J,...) = FUN(B(:,:,I,J,...)). FUN is a
handle to a function that takes a two-dimensional input argument.

You can use gather to retrieve the array from the GPU back to the MATLAB workspace.

A = pagefun(FUN,B,C,...) evaluates FUN using pages of the arrays B, C, etc., as input arguments
with scalar expansion enabled. Any of the input page dimensions that are scalar are virtually
replicated to match the size of the other arrays in that dimension so that A(:,:,I,J,...) =
FUN(B(:,:,I,J,...), C(:,:,I,J,...),...). At least one of the inputs B, C, etc. must be a
gpuArray. Any other inputs held in CPU memory are converted to a gpuArray before calling the
function on the GPU. If an array is to be used in several different pagefun calls, it is more efficient to
convert that array to a gpuArray before your series of pagefun calls. The input pages B(:,:,I,
J, ...), C(:,:,I, J, ...), etc., must satisfy all of the input and output requirements of FUN.

[A,B,...] = pagefun(FUN,C,...), where FUN is a handle to a function that returns multiple
outputs, returns gpuArrays A, B, etc., each corresponding to one of the output arguments of FUN.
pagefun invokes FUN with as many outputs as there are in the call to pagefun. All elements of A
must be the same class; B can be a different class from A, but all elements of B must be of the same
class; etc.

FUN must return values of the same class each time it is called. The order in which pagefun
computes pages is not specified and should not be relied on.

FUN must be a handle to a function that is written in the MATLAB language (i.e., not a built-in
function or a MEX-function).

Currently the supported values for FUN are:

• Most element-wise gpuArray functions and the following functions:
• @ctranspose
• @fliplr
• @flipud
• @inv
• @mldivide
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• @mrdivide
• @mtimes
• @rot90
• @transpose
• @tril
• @triu

Examples
M = 3;         % output number of rows
K = 6;         % matrix multiply inner dimension
N = 2;         % output number of columns
P1 = 10;       % size of first page dimension
P2 = 17;       % size of second page dimension
P3 = 4;        % size of third page dimension
P4 = 12;       % size of fourth page dimension
A = rand(M,K,P1,1,P3,'gpuArray');
B = rand(K,N,1,P2,P3,P4,'gpuArray');
C = pagefun(@mtimes,A,B);
s = size(C)    % M-by-N-by-P1-by-P2-by-P3-by-P4

s =
    3     2    10    17     4    12

M = 300;       % output number of rows
K = 500;       % matrix multiply inner dimension
N = 1000;      % output number of columns
P = 200;       % number of pages
A = rand(M,K,'gpuArray');   
B = rand(K,N,P,'gpuArray');
C = pagefun(@mtimes,A,B);
s = size(C)    % returns M-by-N-by-P 

s =
    300        1000         200

See Also
arrayfun | bsxfun | gather | gpuArray

Introduced in R2013b
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parallel.cluster.generic.awsbatch.deleteBatchJob
Package: parallel.cluster.generic.awsbatch

Terminate job in AWS Batch

Syntax
parallel.cluster.generic.awsbatch.deleteBatchJob(jobID)

Description
parallel.cluster.generic.awsbatch.deleteBatchJob(jobID) terminates the AWS Batch
job with the ID jobID.

Note This function requires the Parallel Computing Toolbox plugin for MATLAB Parallel Server with
AWS Batch. For an example of how to use the function, see the plugin scripts.

Input Arguments
jobID — ID of the AWS Batch job
character vector | string scalar

ID of the AWS Batch job to terminate.
Data Types: char | string

See Also
parallel.cluster.generic.awsbatch.deleteJobFilesFromS3 |
parallel.cluster.generic.awsbatch.getBatchJobInfo |
parallel.cluster.generic.awsbatch.submitBatchJob

Introduced in R2019b
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parallel.cluster.generic.awsbatch.deleteJobFilesFro
mS3
Package: parallel.cluster.generic.awsbatch

Delete job files from Amazon S3

Syntax
parallel.cluster.generic.awsbatch.deleteJobFilesFromS3(job,s3Bucket,s3Prefix)

Description
parallel.cluster.generic.awsbatch.deleteJobFilesFromS3(job,s3Bucket,s3Prefix)
deletes the files for job, which are located in the folder s3://s3Bucket/s3Prefix, from Amazon
S3™.

Note This function requires the Parallel Computing Toolbox plugin for MATLAB Parallel Server with
AWS Batch. For an example of how to use the function, see the plugin scripts.

Input Arguments
job — MATLAB job
parallel.job.CJSIndependentJob object

MATLAB job, specified as a parallel.job.CJSIndependentJob object.
Data Types: parallel.job.CJSIndependentJob

s3Bucket — S3 bucket
character vector | string scalar

S3 bucket where the job files are stored, specified as a character vector or string scalar.
Data Types: char | string

s3Prefix — Prefix of S3 location
character vector | string scalar

Prefix of the S3 location that contains the job files, specified as a character vector or a string scalar.
Data Types: char | string

See Also
parallel.cluster.generic.awsbatch.downloadJobFilesFromS3 |
parallel.cluster.generic.awsbatch.uploadJobFilesToS3

Introduced in R2019b
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parallel.cluster.generic.awsbatch.downloadJobFile
sFromS3
Package: parallel.cluster.generic.awsbatch

Download job output files from Amazon S3

Syntax
parallel.cluster.generic.awsbatch.downloadJobFilesFromS3(job,s3Bucket,
s3Prefix)

Description
parallel.cluster.generic.awsbatch.downloadJobFilesFromS3(job,s3Bucket,
s3Prefix) downloads the output files for job job from the Amazon S3 bucket s3Bucket and saves
them to the JobStorageLocation of the cluster. This function expects output files stored in zip files
under the prefix s3Prefix/stageOut in the Amazon S3 bucket s3Bucket.

Note This function requires the Parallel Computing Toolbox plugin for MATLAB Parallel Server with
AWS Batch. For an example of how to use the function, see the plugin scripts.

Input Arguments
job — MATLAB job
parallel.job.CJSIndependentJob object

MATLAB job, specified as a parallel.job.CJSIndependentJob object.
Data Types: parallel.job.CJSIndependentJob

s3Bucket — S3 bucket
character vector | string scalar

S3 bucket to download job files from, specified as a character vector or string scalar.
Data Types: char | string

s3Prefix — Prefix of the S3 location
character vector | string scalar

Prefix of the S3 location in the S3 bucket s3Bucket that contains the output files for job, specified
as a character vector or string array.
Data Types: char | string

See Also
parallel.cluster.generic.awsbatch.deleteJobFilesFromS3 |
parallel.cluster.generic.awsbatch.uploadJobFilesToS3
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parallel.cluster.generic.awsbatch.downloadJobLog
Files
Package: parallel.cluster.generic.awsbatch

Download AWS Batch job log files

Syntax
parallel.cluster.generic.awsbatch.downloadJobLogFiles(job,taskIDs,logStreams)

Description
parallel.cluster.generic.awsbatch.downloadJobLogFiles(job,taskIDs,logStreams)
downloads log files for the tasks in job with the IDs taskIDs from the log streams logStreams in
AWS CloudWatch Logs, and saves them to the JobStorageLocation of the cluster.

Note This function requires the Parallel Computing Toolbox plugin for MATLAB Parallel Server with
AWS Batch. For an example of how to use the function, see the plugin scripts.

Input Arguments
job — MATLAB AWS Batch job
parallel.job.CJSIndependentJob object

MATLAB AWS Batch job, specified as a parallel.job.CJSIndependentJob object.
Data Types: parallel.job.CJSIndependentJob

taskIDs — ID of the tasks
numeric vector

ID of the tasks to download logs for, specified as a numeric vector. Each task ID must have a
corresponding log stream in logStreams.
Data Types: double

logStreams — Amazon CloudWatch log streams
cell array of character vectors | string array

Amazon CloudWatch log streams that contain the log information for each task, specified as a cell
array of character vectors or string array. Each log stream must have a corresponding task ID in
taskIDs. You can get this information from the output of
parallel.cluster.generic.awsbatch.getBatchJobInfo.

For more information on log streams, see the Amazon CloudWatch documentation.
Data Types: string | cell
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See Also
parallel.cluster.generic.awsbatch.getBatchJobInfo |
parallel.cluster.generic.awsbatch.submitBatchJob

Introduced in R2019b
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parallel.cluster.generic.awsbatch.getBatchJobInfo
Package: parallel.cluster.generic.awsbatch

Get AWS Batch job information

Syntax
info = parallel.cluster.generic.awsbatch.getBatchJobInfo(job)

Description
info = parallel.cluster.generic.awsbatch.getBatchJobInfo(job) returns a table with
information on each task in the MATLAB AWS Batch job.

Note This function requires the Parallel Computing Toolbox plugin for MATLAB Parallel Server with
AWS Batch. For an example of how to use the function, see the plugin scripts.

Input Arguments
job — MATLAB AWS Batch job
parallel.job.CJSIndependentJob object

MATLAB AWS Batch job, specified as a parallel.job.CJSIndependentJob object.
Data Types: parallel.job.CJSIndependentJob

Output Arguments
info — Task information
table

Task information, returned as a table with the following variables.

Variable Data Type Value
TaskID string The ID of the task in job.

getBatchJobInfo collects
information only on tasks with a
schedulerID.

Status string The status for the
corresponding AWS Batch job of
the task, as reported by AWS
Batch. If AWS Batch does not
provide a state for the job,
Status is set to "UNKNOWN".
Note that "UNKNOWN" is not a
state defined by AWS.
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Variable Data Type Value
LogStreamName string The log stream name in Amazon

CloudWatch Logs for the
corresponding AWS Batch job of
the task. If AWS Batch does not
provide a log stream name, then
LogStreamName is "".

Note that AWS only returns information for AWS Batch jobs in the SUCCEEDED or FAILED state over
the last 24 hours. After 24 hours elapses, Status is "UNKNOWN" and LogStreamName is "".
Data Types: table

See Also
parallel.cluster.generic.awsbatch.submitBatchJob

Introduced in R2019b
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parallel.cluster.generic.awsbatch.submitBatchJob
Package: parallel.cluster.generic.awsbatch

Submit job to AWS Batch

Syntax
schedulerID = parallel.cluster.generic.awsbatch.submitBatchJob(arraySize,
jobName,jobQueue,jobDefinition,command,environmentVariableNames,
environmentVariableValues)

Description
schedulerID = parallel.cluster.generic.awsbatch.submitBatchJob(arraySize,
jobName,jobQueue,jobDefinition,command,environmentVariableNames,
environmentVariableValues) submits a job of size arraySize to the AWS Batch job queue
jobQueue. The job has the name jobName, job definition jobDefinition. The container that runs
the AWS Batch job receives and processes the command command. The job runs with the environment
variables environmentVariableNames and values environmentVariableValues. This function
returns an AWS Batch job ID.

For information about AWS Batch job queues, job definitions, and the command passed to the
container that runs the AWS Batch job, see the AWS Batch documentation.

Note This function requires the Parallel Computing Toolbox plugin for MATLAB Parallel Server with
AWS Batch. For an example of how to use the function, see the plugin scripts.

Input Arguments
arraySize — Size of job
positive integer

Size of the job, specified as a positive integer. If arraySize is greater than 1, then
submitBatchJob submits an array job. Otherwise, submitBatchJob submits a nonarray job.

jobName — Job name
character vector | string scalar

Job name for the AWS Batch job, specified as a character vector or string scalar. For more
information, see the AWS Batch documentation.
Data Types: char | string

jobQueue — AWS Batch job queue
character vector | string scalar

AWS Batch job queue to submit the AWS Batch job to, specified as a character vector or string scalar.
For more information, see the AWS Batch documentation.
Data Types: char | string

 parallel.cluster.generic.awsbatch.submitBatchJob

10-233



jobDefinition — AWS Batch job definition
character vector | string scalar

AWS Batch job definition for the AWS Batch job, specified as a character vector or string scalar. For
more information, see the AWS Batch documentation.
Data Types: char | string

command — Command to pass
character vector | string scalar

Command to pass to the container that runs the AWS Batch job, specified as a character vector or
string scalar. For more information, see the AWS Batch documentation.
Data Types: char | string

environmentVariableNames — Names of environment variables
cell array of character vectors | string array

Names of the environment variables to create on the AWS Batch job, specified as a cell array of
character vectors or string array. Each variable must have a corresponding value in
environmentVariableValues.
Data Types: cell | string

environmentVariableValues — Values of environment variables
cell array of character vectors | string array

Values of the environment variables to create on the AWS Batch job, specified as a cell array of
character vectors or string array. Each value must have a corresponding variable in
environmentVariableValues.
Data Types: cell | string

Output Arguments
schedulerID — Scheduler ID
string scalar

Scheduler ID of the AWS Batch job, returned as a string scalar.
Data Types: char

See Also
parallel.cluster.generic.awsbatch.deleteBatchJob |
parallel.cluster.generic.awsbatch.downloadJobFilesFromS3 |
parallel.cluster.generic.awsbatch.downloadJobLogFiles |
parallel.cluster.generic.awsbatch.getBatchJobInfo |
parallel.cluster.generic.awsbatch.uploadJobFilesToS3

Introduced in R2019b
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parallel.cluster.generic.awsbatch.uploadJobFilesTo
S3
Package: parallel.cluster.generic.awsbatch

Upload job input files to Amazon S3

Syntax
s3Prefix = parallel.cluster.generic.awsbatch.uploadJobFilesToS3(job,s3Bucket)

Description
s3Prefix = parallel.cluster.generic.awsbatch.uploadJobFilesToS3(job,s3Bucket)
uploads the input files for job to the Amazon S3 bucket s3Bucket under the prefix s3Prefix/
stageIn/, where s3Prefix is a randomly generated string.

Note This function requires the Parallel Computing Toolbox plugin for MATLAB Parallel Server with
AWS Batch. For an example of how to use the function, see the plugin scripts.

Input Arguments
job — MATLAB job
parallel.job.CJSIndependentJob object

MATLAB job, specified as a parallel.job.CJSIndependentJob object.
Data Types: parallel.job.CJSIndependentJob

s3Bucket — S3 bucket
character vector | string scalar

S3 bucket to upload job input files to, specified as a character vector or string scalar.
Data Types: char | string

Output Arguments
s3Prefix — Prefix of S3 location
string scalar

Prefix of the S3 location in the S3 bucket s3Bucket to which uploadJobFilesToS3 uploads files.
s3Prefix is a randomly generated string.
Data Types: char | string
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See Also
parallel.cluster.generic.awsbatch.deleteJobFilesFromS3 |
parallel.cluster.generic.awsbatch.downloadJobFilesFromS3 |
parallel.cluster.generic.awsbatch.submitBatchJob

Introduced in R2019b
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parallel.cluster.Hadoop
Create Hadoop cluster object

Syntax
hadoopCluster = parallel.cluster.Hadoop
hadoopCluster = parallel.cluster.Hadoop(Name,Value)

Description
hadoopCluster = parallel.cluster.Hadoop creates a parallel.cluster.Hadoop object
representing the Hadoop cluster.

You use the resulting object as input to the mapreduce and mapreducer functions, for specifying the
Hadoop cluster as the parallel execution environment for tall arrays and mapreduce.

hadoopCluster = parallel.cluster.Hadoop(Name,Value) uses the specified names and
values to set properties on the created parallel.cluster.Hadoop object.

Examples

Set Hadoop Cluster as Execution Environment for mapreduce and mapreducer

This example shows how to create and use a parallel.cluster.Hadoop object to set a Hadoop cluster as
the mapreduce parallel execution environment.

hadoopCluster = parallel.cluster.Hadoop('HadoopInstallFolder','/host/hadoop-install');
mr = mapreducer(hadoopCluster);

Set Hadoop Cluster as Execution Environment for tall arrays

This example shows how to create and use a parallel.cluster.Hadoop object to set a Hadoop cluster as
the tall array parallel execution environment.

hadoopCluster = parallel.cluster.Hadoop(...
    'HadoopInstallFolder','/host/hadoop-install', ...
    'SparkInstallFolder','/host/spark-install');
mr = mapreducer(hadoopCluster);

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'HadoopInstallFolder','/share/hadoop/a1.2.1'
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ClusterMatlabRoot — Path to MATLAB for workers
character vector

Path to MATLAB for workers, specified as the comma-separated pair consisting of
'ClusterMatlabRoot' and a character vector. This points to the installation of MATLAB Parallel
Server for the workers, whether local to each machine or on a network share.

HadoopConfigurationFile — Path to Hadoop application configuration file
character vector

Path to Hadoop application configuration file, specified as the comma-separated pair consisting of
'HadoopConfigurationFile' and a character vector.

HadoopInstallFolder — Path to Hadoop installation on the local machine
character vector

Path to Hadoop installation on the local machine, specified as the comma-separated pair consisting of
'HadoopInstallFolder' and a character vector. If this property is not set, the default is the value
specified by the environment variable HADOOP_PREFIX, or if that is not set, then HADOOP_HOME.

SparkInstallFolder — Path to Spark enabled Hadoop installation on worker machines
character vector

Path to Spark enabled Hadoop installation on worker machines, specified as the comma-separated
pair consisting of 'SparkInstallFolder' and a character vector. If this property is not set, the
default is the value specified by the environment variable SPARK_PREFIX, or if that is not set, then
SPARK_HOME.

Output Arguments
hadoopCluster — Hadoop cluster
parallel.cluster.Hadoop object

Hadoop cluster, returned as a parallel.cluster.Hadoop object.

See Also
mapreduce | mapreducer

Topics
“Use Tall Arrays on a Spark Enabled Hadoop Cluster” on page 5-51
“Run mapreduce on a Hadoop Cluster” on page 5-57
“Read and Analyze Hadoop Sequence File” (MATLAB)

Introduced in R2014b
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parallel.clusterProfiles
Names of all available cluster profiles

Syntax
ALLPROFILES = parallel.clusterProfiles
[ALLPROFILES, DEFAULTPROFILE] = parallel.clusterProfiles

Description
ALLPROFILES = parallel.clusterProfiles returns a cell array containing the names of all
available profiles.

[ALLPROFILES, DEFAULTPROFILE] = parallel.clusterProfiles returns a cell array
containing the names of all available profiles, and separately the name of the default profile.

The cell array ALLPROFILES always contains a profile called local for the local cluster, and always
contains the default profile. If the default profile has been deleted, or if it has never been set,
parallel.clusterProfiles returns local as the default profile.

You can create and change profiles using the saveProfile or saveAsProfile methods on a cluster
object. Also, you can create, delete, and change profiles through the Cluster Profile Manager.

Examples
Display the names of all the available profiles and set the first in the list to be the default profile.

allNames = parallel.clusterProfiles()
parallel.defaultClusterProfile(allNames{1});

Display the names of all the available profiles and get the cluster identified by the last profile name in
the list.

allNames = parallel.clusterProfiles()
lastCluster = parcluster(allNames{end});

See Also
parallel.defaultClusterProfile | parallel.exportProfile | parallel.importProfile

Introduced in R2012a
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parallel.defaultClusterProfile
Examine or set default cluster profile

Syntax
p = parallel.defaultClusterProfile
oldprofile = parallel.defaultClusterProfile(newprofile)

Description
p = parallel.defaultClusterProfile returns the name of the default cluster profile.

oldprofile = parallel.defaultClusterProfile(newprofile) sets the default profile to be
newprofile and returns the previous default profile. It might be useful to keep the old profile so
that you can reset the default later.

If the default profile has been deleted, or if it has never been set,
parallel.defaultClusterProfile returns 'local' as the default profile.

You can save modified profiles with the saveProfile or saveAsProfile method on a cluster
object. You can create, delete, import, and modify profiles with the Cluster Profile Manager,
accessible from the MATLAB desktop Home tab Environment area by selecting Parallel > Create
and Manage Clusters.

Examples
Display the names of all available profiles and set the first in the list to be the default.

allProfiles = parallel.clusterProfiles
parallel.defaultClusterProfile(allProfiles{1});

First set the profile named 'MyProfile' to be the default, and then set the profile named
'Profile2' to be the default.

parallel.defaultClusterProfile('MyProfile');
oldDefault = parallel.defaultClusterProfile('Profile2');
strcmp(oldDefault,'MyProfile') % returns true

See Also
parallel.clusterProfiles | parallel.importProfile

Introduced in R2012a
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parallel.exportProfile
Export one or more profiles to file

Syntax
parallel.exportProfile(profileName, filename)
parallel.exportProfile({profileName1,profileName2,...,profileNameN},filename)

Description
parallel.exportProfile(profileName, filename) exports the profile with the name
profileName to specified filename. The extension .mlsettings is appended to the filename, unless
already there.

parallel.exportProfile({profileName1,profileName2,...,profileNameN},filename)
exports the profiles with the specified names to filename.

To import a profile, use parallel.importProfile or the Cluster Profile Manager.

Examples
Export the profile named MyProfile to the file MyExportedProfile.mlsettings.

parallel.exportProfile('MyProfile','MyExportedProfile')

Export the default profile to the file MyDefaultProfile.mlsettings.

def_profile = parallel.defaultClusterProfile();
parallel.exportProfile(def_profile,'MyDefaultProfile')

Export all profiles except for local to the file AllProfiles.mlsettings.

allProfiles = parallel.clusterProfiles();
% Remove 'local' from allProfiles
notLocal = ~strcmp(allProfiles,'local');
profilesToExport = allProfiles(notLocal);
if ~isempty(profilesToExport)
  parallel.exportProfile(profilesToExport,'AllProfiles');
end

See Also
parallel.clusterProfiles | parallel.importProfile

Introduced in R2012a
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parallel.gpu.CUDAKernel
Create GPU CUDA kernel object from PTX and CU code

Syntax
KERN = parallel.gpu.CUDAKernel(PTXFILE,CPROTO)
KERN = parallel.gpu.CUDAKernel(PTXFILE,CPROTO,FUNC)
KERN = parallel.gpu.CUDAKernel(PTXFILE,CUFILE)
KERN = parallel.gpu.CUDAKernel(PTXFILE,CUFILE,FUNC)

Description
KERN = parallel.gpu.CUDAKernel(PTXFILE,CPROTO) and KERN =
parallel.gpu.CUDAKernel(PTXFILE,CPROTO,FUNC) create a CUDAKernel object that you can
use to call a CUDA kernel on the GPU. PTXFILE is the name of the file that contains the PTX code, or
the contents of a PTX file as a character vector; and CPROTO is the C prototype for the kernel call that
KERN represents. If specified, FUNC must be a character vector that unambiguously defines the
appropriate kernel entry name in the PTX file. If FUNC is omitted, the PTX file must contain only a
single entry point.

KERN = parallel.gpu.CUDAKernel(PTXFILE,CUFILE) and KERN =
parallel.gpu.CUDAKernel(PTXFILE,CUFILE,FUNC) create a kernel object that you can use to
call a CUDA kernel on the GPU. In addition, they read the CUDA source file CUFILE, and look for a
kernel definition starting with '__global__' to find the function prototype for the CUDA kernel that
is defined in PTXFILE.

For information on executing your kernel object, see “Run a CUDAKernel” on page 8-24.

Examples
If simpleEx.cu contains the following:
/*
* Add a constant to a vector.
*/
__global__ void addToVector(float * pi, float c, int vecLen)  {
   int idx = blockIdx.x * blockDim.x + threadIdx.x;
   if (idx < vecLen) {
       pi[idx] += c;
   }
}

and simpleEx.ptx contains the PTX resulting from compiling simpleEx.cu into PTX, both of the
following statements return a kernel object that you can use to call the addToVector CUDA kernel.

kern = parallel.gpu.CUDAKernel('simpleEx.ptx', ...
                                             'simpleEx.cu');
kern = parallel.gpu.CUDAKernel('simpleEx.ptx', ...
                                     'float *,float,int');

See Also
arrayfun | existsOnGPU | feval | gpuArray | reset
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parallel.gpu.RandStream.create
Package: parallel.gpu

Create independent random number streams on a GPU

Syntax
s = parallel.gpu.RandStream.create('gentype')
[s1,s2,...] = parallel.gpu.RandStream.create('gentype','NumStreams',n)
[ ___ ] = parallel.gpu.RandStream.create('gentype',Name,Value)

Description
s = parallel.gpu.RandStream.create('gentype') creates a single random number stream
that uses the random number generator algorithm specified by 'gentype'.

Note The parallel.gpu.RandStream object creation function is a more concise alternative when
you want to create a single stream.

[s1,s2,...] = parallel.gpu.RandStream.create('gentype','NumStreams',n) creates n
random number streams that use the random number generator algorithm specified by 'gentype'.
The streams are independent in a pseudorandom sense. The streams are not necessarily independent
from streams created at other times.

[ ___ ] = parallel.gpu.RandStream.create('gentype',Name,Value) also specifies
additional Name,Value pairs to control the creation of the stream, including the number of
independent streams to create.

Examples

Create Multiple Random Number Streams Simultaneously

You can create multiple independent random number streams that have the same generator, seed,
and normal transformations. Here, several independent streams are created and then used to
generate independent streams of random numbers.

First, create the streams as a cell array.

streams = parallel.gpu.RandStream.create('Philox', 'NumStreams',3,'Seed',1,'NormalTransform','Inversion', 'CellOutput',true)

streams =

  1×3 cell array

    {1×1 parallel.gpu.RandStream}    {1×1 parallel.gpu.RandStream}    {1×1 parallel.gpu.RandStream}

Now, you can use each stream to generate random numbers. In this example, you create a matrix in
which each row is generated from a different random number stream.
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x = zeros(3,10,'gpuArray');
for i=1:3
   x(i,:) = rand(streams{i},1,10);
end
x

x =

    0.5361    0.2319    0.7753    0.2390    0.0036    0.5262    0.8629    0.9974    0.9576    0.0054
    0.3084    0.3396    0.6758    0.5145    0.7909    0.7709    0.3386    0.1168    0.3694    0.0392
    0.5218    0.5625    0.7090    0.5854    0.5067    0.6528    0.5095    0.8777    0.3094    0.1100

Input Arguments
'gentype' — Random number generator algorithm
character vector | string

Random number generator, specified as a character vector or string for any valid random number
generator that supports multiple streams and substreams. Three random number generator
algorithms are supported on the GPU.

Keyword Generator Multiple Stream and
Substream Support

Approximate Period in
Full Precision

'Threefry' or
'Threefry4x64_20'

Threefry 4x64 generator
with 20 rounds

Yes 2514 (2256 streams of length
2258)

'Philox' or
'Philox4x32_10'

Philox 4x32 generator with
10 rounds

Yes 2193 (264 streams of length
2129)

'CombRecursive' or
'mrg32k3a'

Combined multiple
recursive generator

Yes 2191 (263 streams of length
2127)

For more information on the differences between generating random numbers on the GPU and CPU,
see “Random Number Streams on a GPU” on page 8-6.
Example: parallel.gpu.RandStream.create('Philox')

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: parallel.gpu.RandStream.create('Philox','Seed',10) creates a single random
number stream using the 'Philox' generator algorithm with seed 10.

NumStreams — Number of streams
1 (default) | non-negative integer

Number of independent streams to be created, specified as the comma-separated pair consisting of
'NumStreams' and a non-negative integer. The streams are independent in a pseudorandom sense.
The streams are not necessarily independent from streams created at other times.

StreamIndices — Indices of the streams
[1:N] (default) | vector of integers | integer
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Indices of the streams created in this function call, specified as the comma-separated pair consisting
of 'StreamIndices' and a nonnegative integer or a vector of nonnegative integers. The default
value is 1:N, where N is the value specified with the 'NumStreams' parameter.

The values provided for 'StreamIndices' must be less than or equal to the value provided for
'NumStreams'.

Seed — Random number seed
0 (default) | nonnegative integer | 'shuffle'

Random number seed for all streams initialized, specified as the comma-separated pair consisting of
'Seed' and a nonnegative integer. The seed specifies the starting point for the algorithm to generate
random numbers.

NormalTransform — Transformation algorithm for normally distributed random numbers
'BoxMuller' | 'Inversion'

Transformation algorithm for normally distributed random numbers generated using the randn
(RandStream), specified as the comma-separated pair 'NormalTransform' and the algorithm
names 'BoxMuller' or 'Inversion'. The 'BoxMuller' algorithm is supported for the
'Threefry and 'Philox' generators. The 'Inversion' algorithm is supported for the
'CombRecursive' generator. No other transformation algorithms are supported on the GPU.

CellOutput — Return streams as cell array
0 (default) | 1

Logical flag indicating whether to return the stream objects as elements of a cell array, specified as
the comma-separated pair 'CellOutput' and the logical value 0 or 1. The default value is false.

Output Arguments
s — Random number stream
parallel.gpu.RandStream object

Random number stream for generating random numbers on a GPU, returned as a
parallel.gpu.RandStream object.

Tips
• If you create multiple streams by calling parallel.gpu.RandStream.create several times, the

streams are not necessarily independent of each other. To create independent streams from
separate calls of parallel.gpu.RandStream.create:

• Specify the same set of values for gentype, 'NumStreams', and 'Seed' in each case.
• Specify a different value for 'StreamIndices' that is between 1 and the 'NumStreams'

value in each case.

See Also
gpurng | parallel.gpu.RandStream | parallel.gpu.RandStream.getGlobalStream |
parallel.gpu.RandStream.list | parallel.gpu.RandStream.setGlobalStream
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parallel.gpu.RandStream.getGlobalStream
Package: parallel.gpu

Current global GPU random number stream

Syntax
stream = parallel.gpu.RandStream.getGlobalStream

Description
stream = parallel.gpu.RandStream.getGlobalStream returns the current global random
number stream on the GPU.

Note The gpurng function is a more concise alternative for many uses of
parallel.gpu.RandStream.setGlobalStream.

Examples

Save the Default Global Stream

Use parallel.gpu.RandStream.getGlobalStream to save the default stream settings.

defaultStr = parallel.gpu.RandStream.getGlobalStream

defaultStr =

Threefry4x64_20 random stream on the GPU (current global stream)
             Seed: 0
  NormalTransform: BoxMuller

If you change the global stream, you can use the stream defaultStr to restore the default settings.
For example, suppose that you change the global stream to a different stream.

newStr = parallel.gpu.RandStream('CombRecursive', 'NormalTransform','Inversion');
defaultStr = parallel.gpu.RandStream.setGlobalStream(newStr)

defaultStr =

Threefry4x64_20 random stream on the GPU
             Seed: 0
  NormalTransform: BoxMuller

defaultStr is no longer the current global GPU stream. Once you finish your calculations using the
new global stream settings, you can reset the stream to the default settings.

newStr = parallel.gpu.RandStream.setGlobalStream(defaultStr)

newStr =
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MRG32K3A random stream on the GPU
             Seed: 0
  NormalTransform: Inversion

defaultStr

defaultStr =

Threefry4x64_20 random stream on the GPU (current global stream)
             Seed: 0
  NormalTransform: BoxMuller

defaultStr is once again the current global stream.

Output Arguments
stream — Global GPU random number stream
parallel.gpu.RandStream object

Global random number stream for generating random numbers on a GPU, returned as a
parallel.gpu.RandStream object.

See Also
gpurng | parallel.gpu.RandStream | parallel.gpu.RandStream.create |
parallel.gpu.RandStream.setGlobalStream

Introduced in R2011b
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parallel.gpu.RandStream.list
Package: parallel.gpu

Random number generator algorithms on the GPU

Syntax
parallel.gpu.RandStream.list

Description
parallel.gpu.RandStream.list lists the generator algorithms that can be used when creating a
random number stream with parallel.gpu.RandStream or
parallel.gpu.RandStream.create.

Examples

Available Generators on the GPU

When you use parallel.gpu.RandStream.list, MATLABdisplays a list of the available random
number generators.

parallel.gpu.RandStream.list

The following random number generator algorithms are available:
 
MRG32K3A:         Combined multiple recursive generator (supports parallel streams)
Philox4x32_10:    Philox 4x32 generator with 10 rounds (supports parallel streams)
Threefry4x64_20:  Threefry 4x64 generator with 20 rounds (supports parallel streams)

Each of these generators supports multiple parallel streams.

Keyword Generator Multiple Stream and
Substream Support

Approximate Period in
Full Precision

'Threefry' or
'Threefry4x64_20'

Threefry 4x64 generator
with 20 rounds

Yes 2514 (2256 streams of length
2258)

'Philox' or
'Philox4x32_10'

Philox 4x32 generator with
10 rounds

Yes 2193 (264 streams of length
2129)

'CombRecursive' or
'mrg32k3a'

Combined multiple
recursive generator

Yes 2191 (263 streams of length
2127)

For more information on the differences between generating random numbers on the GPU and CPU,
see “Random Number Streams on a GPU” on page 8-6.

See Also
gpurng | parallel.gpu.RandStream | parallel.gpu.RandStream.create |
parallel.gpu.RandStream.getGlobalStream |
parallel.gpu.RandStream.setGlobalStream
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parallel.gpu.RandStream.setGlobalStream
Package: parallel.gpu

Set GPU global random number stream

Syntax
prevStream = parallel.gpu.RandStream.setGlobalStream(stream)

Description
prevStream = parallel.gpu.RandStream.setGlobalStream(stream) replaces the global
random number stream with the stream specified by stream.

Examples

Change the Global Stream

You can change the global random number stream on the GPU and store the old settings for the
global stream. First, define the random number stream that you want to set as the new global stream.

newStr = parallel.gpu.RandStream('Philox','Seed',1,'NormalTransform','Inversion')

newStr =

Philox4x32_10 random stream on the GPU
             Seed: 1
  NormalTransform: Inversion

Next, set this new stream to be the global stream.

oldStr = parallel.gpu.RandStream.setGlobalStream(newStr)

oldStr =

Threefry4x64_20 random stream on the GPU
             Seed: 0
  NormalTransform: BoxMuller

oldStr holds the settings for the previous global random number stream on the GPU. The new global
stream is newStr.

newStr

newStr =

Philox4x32_10 random stream on the GPU (current global stream)
             Seed: 1
  NormalTransform: Inversion
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On a GPU, the functions rand, randi, and randn draw random numbers from the new global stream
using the 'Philox' generator algorithm.

Input Arguments
stream — New global random number stream
parallel.gpu.RandStream object

New global random number stream on the GPU, specified as a parallel.gpu.RandStream object.
stream replaces the previous global stream.

Output Arguments
prevStream — Previous global random number stream
parallel.gpu.RandStream object

Previous global random number stream on the GPU, specified as a parallel.gpu.RandStream
object.

See Also
gpurng | parallel.gpu.RandStream | parallel.gpu.RandStream.create |
parallel.gpu.RandStream.getGlobalStream

Introduced in R2011b
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parallel.importProfile
Import cluster profiles from file

Syntax
prof = parallel.importProfile(filename)

Description
prof = parallel.importProfile(filename) imports the profiles stored in the specified file
and returns the names of the imported profiles. If filename has no extension, .mlsettings is
assumed; configuration files must be specified with the .mat extension. Configuration .mat files
contain only one profile, but profile .mlsettings files can contain one or more profiles. If only one
profile is defined in the file, then prof is a character vector reflecting the name of the profile; if
multiple profiles are defined in the file, then prof is a cell array of character vectors. If a profile with
the same name as an imported profile already exists, an extension is added to the name of the
imported profile.

You can use the imported profile with any functions that support profiles.
parallel.importProfile does not set any of the imported profiles as the default; you can set the
default profile by using the parallel.defaultClusterProfile function.

Profiles that were exported in a previous release are upgraded during import. Configurations are
automatically converted to cluster profiles.

Imported profiles are saved as a part of your MATLAB settings, so these profiles are available in
subsequent MATLAB sessions without importing again.

Examples
Import a profile from file ProfileMaster.mlsettings and set it as the default cluster profile.

profile_master = parallel.importProfile('ProfileMaster');
parallel.defaultClusterProfile(profile_master)

Import all the profiles from the file ManyProfiles.mlsettings, and use the first one to open a
parallel pool.

profs = parallel.importProfile('ManyProfiles');
parpool(profs{1})

Import a configuration from the file OldConfiguration.mat, and set it as the default parallel
profile.

old_conf = parallel.importProfile('OldConfiguration.mat')
parallel.defaultClusterProfile(old_conf)

See Also
parallel.clusterProfiles | parallel.defaultClusterProfile |
parallel.exportProfile

10 Functions

10-254



Introduced in R2012a

 parallel.importProfile

10-255



parallel.pool.Constant
Build parallel.pool.Constant from data or function handle

Syntax
C = parallel.pool.Constant(X)
C = parallel.pool.Constant(FH)
C = parallel.pool.Constant(FH,CLEANUP)
C = parallel.pool.Constant(COMP)

Description
C = parallel.pool.Constant(X) copies the value X to each worker and returns a
parallel.pool.Constant object, C, which allows each worker to access the value X within a parallel
language construct (parfor, spmd, parfeval) using the property C.Value. This can improve
performance when you have multiple parfor-loops accessing the same constant set of data, because X
is transferred only once to the workers.

C = parallel.pool.Constant(FH) evaluates function handle FH on each worker and stores the
result in C.Value. This is also useful for creating and using any handle-type resources on the
workers, such as file handles and database connections.

C = parallel.pool.Constant(FH,CLEANUP) evaluates function handle FH on each worker and
stores the result in C.Value. When C is cleared, the function handle CLEANUP is evaluated with a
single argument C.Value on each worker.

C = parallel.pool.Constant(COMP) uses the values stored in the Composite COMP, and stores
them in C.Value on each worker. This is especially useful when the data that you need to use inside
a parfor-loop can be constructed only on the workers, such as when the data is too large to
conveniently fit in the client, or when it is being loaded from a file that only the workers can access. If
COMP does not have a defined value on every worker, an error results.

Tips
parallel.pool.Constant must be called in the MATLAB client session.

You can use a parallel.pool.Constant with an already running parallel pool or subsequent
parallel pools.

Examples
Make parallel.pool.Constant from array in client

This example shows how to create a numeric parallel.pool.Constant, and use it in multiple parfor-
loops on the same pool.

First, create some large data on the client, then build a parallel.pool.Constant, transferring the data
to the pool only once.
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data = rand(1000);
c = parallel.pool.Constant(data);
for ii = 1:10
    % Run multiple PARFOR loops accessing the data.
    parfor jj = 1:10
        x(ii,jj) = c.Value(ii,jj);
    end
end

Make parallel.pool.Constant from function handle

This example shows how to create a parallel.pool.Constant with a function handle and a cleanup
function.

Create a temporary file on each worker. By passing @fclose as the second argument, the file is
automatically closed when c goes out of scope.

c = parallel.pool.Constant(@() fopen(tempname(pwd),'wt'),@fclose);
spmd
   disp(fopen(c.Value)); % Displays the temporary filenames.
end

parfor idx = 1:1000
   fprintf(c.Value,'Iteration: %d\n',idx);
end
clear c;   % Closes the temporary files.

Make parallel.pool.Constant from Composite

This example shows how to build large data sets as a Composite on pool workers inside an spmd
block, and then use that data as a parallel.pool.Constant inside a parfor-loop.

spmd
  if labindex == 1
    x = labBroadcast(1,rand(5000));
  else
    x = labBroadcast(1);
  end
end
xc = parallel.pool.Constant(x);
parfor idx = 1:10
  s(idx) = sum(xc.Value(:,idx));
end
s

s =
   1.0e+03 *

    2.5108    2.5031    2.5123    2.4909    2.4957    2.5462    2.4859    2.5320    2.5076    2.5432

See Also
parcluster | parfeval | parfor | parpool | spmd

Introduced in R2015b
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parcluster
Create cluster object

Syntax
c = parcluster
c = parcluster(profile)

Description
c = parcluster returns a cluster object representing the cluster identified by the default cluster
profile, with the cluster object properties set to the values defined in that profile. Use a cluster object
in functions such as parpool or batch.

c = parcluster(profile) returns a cluster object representing the cluster identified by the
specified cluster profile, with the cluster object properties set to the values defined in that profile.

You can save modified profiles with the saveProfile or saveAsProfile method on a cluster
object. You can create, delete, import, and modify profiles with the Cluster Profile Manager,
accessible from the MATLAB desktop Home tab Environment area by selecting Parallel > Create
and Manage Clusters. For more information, see “Discover Clusters and Use Cluster Profiles” on
page 5-11.

Examples
Find the cluster identified by the default parallel computing cluster profile, with the cluster object
properties set to the values defined in that profile.

myCluster = parcluster;

View the name of the default profile and find the cluster identified by it. Open a parallel pool on the
cluster.

defaultProfile = parallel.defaultClusterProfile
myCluster = parcluster(defaultProfile);
parpool(myCluster);

Find a particular cluster using the profile named 'MyProfile', and create an independent job on
the cluster.

myCluster = parcluster('MyProfile');
j = createJob(myCluster);

See Also
createJob | parallel.Cluster | parallel.clusterProfiles |
parallel.defaultClusterProfile | parpool

Introduced in R2012a
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parfeval
Package: parallel

Execute function asynchronously on parallel pool worker

Syntax
F = parfeval(p,fcn,numout,in1,in2,...)
F = parfeval(fcn,numout,in1,in2,...)

Description
F = parfeval(p,fcn,numout,in1,in2,...) requests asynchronous execution of the function
fcn on a worker contained in the parallel pool p, expecting numout output arguments and supplying
as input arguments in1,in2,.... The asynchronous evaluation of fcn does not block MATLAB. F is
a parallel.FevalFuture object, from which the results can be obtained when the worker has completed
evaluating fcn. The evaluation of fcn always proceeds unless you explicitly cancel execution by
calling cancel(F). To request multiple function evaluations, you must call parfeval multiple times.
(However, parfevalOnAll can run the same function on all workers.)

F = parfeval(fcn,numout,in1,in2,...) requests asynchronous execution on the current
parallel pool. If no pool exists, it starts a new parallel pool, unless your parallel preferences disable
automatic creation of pools.

Examples

Execute Function Asynchronously and Fetch Outputs

Use parfeval to request asynchronous execution of a function on a worker.

For example, submit a single request to the parallel pool. Retrieve the outputs by using
fetchOutputs.

f = parfeval(@magic,1,10);
value = fetchOutputs(f);

You can also submit a vector of multiple future requests in a for-loop and collect the results as they
become available. For efficiency, preallocate an array of future objects before.

f(1:10) = parallel.FevalFuture;
for idx = 1:10
f(idx) = parfeval(@magic,1,idx);
end

Retrieve the individual future outputs as they become available by using fetchNext.

magicResults = cell(1,10);
for idx = 1:10
[completedIdx,value] = fetchNext(f);
magicResults{completedIdx} = value;
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fprintf('Got result with index: %d.\n', completedIdx);
end

Plot During Parameter Sweep with parfeval

This example shows how to perform a parallel parameter sweep with parfeval and send results
back during computations with a DataQueue object. parfeval does not block MATLAB, so you can
continue working while computations take place.

The example performs a parameter sweep on the Lorenz system of ordinary differential equations, on
the parameters σ and ρ, and shows the chaotic nature of this system.

d
dtx = σ y − z

d
dt y = x ρ− z − y

d
dtz = xy − βx

Create Parameter Grid

Define the range of parameters that you want to explore in the parameter sweep.

gridSize = 40;
sigma = linspace(5, 45, gridSize);
rho = linspace(50, 100, gridSize);
beta = 8/3;

Create a 2-D grid of parameters by using the meshgrid function.

[rho,sigma] = meshgrid(rho,sigma);

Create a figure object, and set 'Visible' to true so that it opens in a new window, outside of the
live script. To visualize the results of the parameter sweep, create a surface plot. Note that initializing
the Z component of the surface with NaN creates an empty plot.

figure('Visible',true);
surface = surf(rho,sigma,NaN(size(sigma)));
xlabel('\rho','Interpreter','Tex')
ylabel('\sigma','Interpreter','Tex')
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Set Up Parallel Environment

Create a pool of parallel workers by using the parpool function.

parpool;

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

To send data from the workers, create a DataQueue object. Set up a function that updates the
surface plot each time a worker sends data by using the afterEach function. The updatePlot
function is a supporting function defined at the end of the example.

Q = parallel.pool.DataQueue;
afterEach(Q,@(data) updatePlot(surface,data));

Perform Parallel Parameter Sweep

After you define the parameters, you can perform the parallel parameter sweep.

parfeval works more efficiently when you distribute the workload. To distribute the workload,
group the parameters to explore into partitions. For this example, split into uniform partitions of size
step by using the colon operator (:). The resulting array partitions contains the boundaries of the
partitions. Note that you must add the end point of the last partition.

step = 100;
partitions = [1:step:numel(sigma), numel(sigma)+1]
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partitions = 1×17

           1         101         201         301         401         501         601         701         801         901        1001        1101        1201        1301        1401        1501        1601

For best performance, try to split into partitions that are:

• Large enough that the computation time is large compared to the overhead of scheduling the
partition.

• Small enough that there are enough partitions to keep all workers busy.

To represent function executions on parallel workers and hold their results, use future objects.

f(1:numel(partitions)-1) = parallel.FevalFuture;

Offload computations to parallel workers by using the parfeval function. parameterSweep is a
helper function defined at the end of this script that solves the Lorenz system on a partition of the
parameters to explore. It has one output argument, so you must specify 1 as the number of outputs in
parfeval.

for ii = 1:numel(partitions)-1
    f(ii) = parfeval(@parameterSweep,1,partitions(ii),partitions(ii+1),sigma,rho,beta,Q);
end

parfeval does not block MATLAB, so you can continue working while computations take place. The
workers compute in parallel and send intermediate results through the DataQueue as soon as they
become available.

If you want to block MATLAB until parfeval completes, use the wait function on the future objects.
Using the wait function is useful when subsequent code depends on the completion of parfeval.

wait(f);

10 Functions

10-262



After parfeval finishes the computations, wait finishes and you can execute more code. For
example, plot the contour of the resulting surface. Use the fetchOutputs function to retrieve the
results stored in the future objects.

results = reshape(fetchOutputs(f),gridSize,[]);
contourf(rho,sigma,results)
xlabel('\rho','Interpreter','Tex')
ylabel('\sigma','Interpreter','Tex')
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If your parameter sweep needs more computational resources and you have access to a cluster, you
can scale up your parfeval computations. For more information, see “Scale up from Desktop to
Cluster”.

Define Helper Functions

Define a helper function that solves the Lorenz system on a partition of the parameters to explore.
Send intermediate results to the MATLAB client by using the send function on the DataQueue
object.

function results = parameterSweep(first,last,sigma,rho,beta,Q)
    results = zeros(last-first,1);
    for ii = first:last-1
        lorenzSystem = @(t,a) [sigma(ii)*(a(2) - a(1)); a(1)*(rho(ii) - a(3)) - a(2); a(1)*a(2) - beta*a(3)];
        [t,a] = ode45(lorenzSystem,[0 100],[1 1 1]);
        result = a(end,3);
        send(Q,[ii,result]);
        results(ii-first+1) = result;
    end
end

Define another helper function that updates the surface plot when new data arrives.

function updatePlot(surface,data)
    surface.ZData(data(1)) = data(2);
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    drawnow('limitrate');
end

Update a User Interface Asynchronously Using afterEach and afterAll

You can perform asynchronous computations on workers using parfeval and leave the user
interface responsive. Use afterEach to update the user interface when intermediate computations
are ready. Use afterAll to update the user interface when all the computations are ready.

Create a simple user interface using a waitbar.

h = waitbar(0, 'Waiting...');

Use parfeval to carry out time-consuming computations in the workers, for example, eigenvalues of
random matrices. The computations happen asynchronously and the user interface updates during
computation. With default preferences, parfeval creates a parpool automatically if there is not
one already created.

for idx = 1:100
  f(idx) = parfeval(@(n) real(eig(randn(n))), 1, 5e2); 
end

Compute the largest value in each of the computations when they become ready using afterEach.
Update the proportion of finished futures in the waitbar when each of them completes using
afterEach.

maxFuture = afterEach(f, @max, 1);
updateWaitbarFuture = afterEach(f, @(~) waitbar(sum(strcmp('finished', {f.State}))/numel(f), h), 1);

Close the waitbar when all the computations are done. Use afterAll on updateWaitbarFuture to
continue automatically with a close operation. afterAll obtains the figure handle from
updateWaitbarFuture and executes its function on it.

closeWaitbarFuture = afterAll(updateWaitbarFuture, @(h) delete(h), 0);

Show a histogram after all the maximum values are computed. Use afterAll on maxFuture to
continue the operation automatically. afterAll obtains the maximum values from maxFuture and
calls histogram on them.

showsHistogramFuture = afterAll(maxFuture, @histogram, 0);

Input Arguments
p — Parallel pool
parallel.Pool object
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Parallel pool of workers, specified as a parallel.Pool object. You can create a parallel pool by
using the parpool function.
Data Types: parallel.Pool

fcn — Function to execute
function_handle

Function to execute on a worker, specified as a function handle.
Example: fcn = @sum
Data Types: function_handle

numout — Number of output arguments
integer

Number of output arguments that are expected from fcn.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

in1,in2,... — Function arguments
comma-separated list of variables or expressions

Function arguments to pass to fcn, specified as a comma-separated list of variables or expressions.

Output Arguments
F — Future
parallel.FevalFuture

Future object, returned as a parallel.FevalFuture, that represents the execution of fcn on a
parallel worker and holds its results. Use fetchOutputs or fetchNext to collect the results.

See Also
afterAll | afterEach | cancel | fetchNext | fetchOutputs | isequal | parallel.FevalFuture |
parallel.pool.Constant | parfevalOnAll | parpool | ticBytes | tocBytes | wait

Introduced in R2013b
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parfevalOnAll
Execute function asynchronously on all workers in parallel pool

Syntax
F = parfevalOnAll(p,fcn,numout,in1,in2,...)
F = parfevalOnAll(fcn,numout,in1,in2,...)

Description
F = parfevalOnAll(p,fcn,numout,in1,in2,...) requests the asynchronous execution of the
function fcn on all workers in the parallel pool p. parfevalOnAll evaluates fcn on each worker
with input arguments in1,in2,..., and expects numout output arguments. F is a
parallel.FevalOnAllFuture object, from which you can obtain the results when all workers have
completed executing fcn.

F = parfevalOnAll(fcn,numout,in1,in2,...) requests asynchronous execution on all
workers in the current parallel pool. If no pool exists, it starts a new parallel pool, unless your parallel
preferences disable automatic creation of pools.

Note Use parfevalOnAll instead of parfor or spmd if you want to use clear. This preserves
workspace transparency. See “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-
50.

Examples
Unload a mex file before deleting temporary folders for distributing simulations, using the clear
function. Because clear has 0 output arguments, specify 0 in the numout input argument of
parfevalOnAll.

parfevalOnAll(@clear,0,'mex');

Close all Simulink models on all workers:

p = gcp(); % Get the current parallel pool
f = parfevalOnAll(p,@bdclose,0,'all');
% No output arguments, but you might want to wait for completion
wait(f);

See Also
cancel | fetchNext | fetchOutputs | parallel.pool.Constant | parfeval | parpool | wait

Introduced in R2013b
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parfor
Execute for-loop iterations in parallel on workers

Syntax
parfor loopVar = initVal:endVal; statements; end
parfor (loopVar = initVal:endVal,M); statements; end
parfor (loopVar = initVal:endVal,opts); statements; end
parfor (loopVar = initVal:endVal,cluster); statements; end

Description
parfor loopVar = initVal:endVal; statements; end executes for-loop iterations in
parallel on workers in a parallel pool.

MATLAB executes the loop body commands in statements for values of loopVar between initVal
and endVal. loopVar specifies a vector of integer values increasing by 1. If you have Parallel
Computing Toolbox, the iterations of statements can execute on a parallel pool of workers on your
multi-core computer or cluster. As with a for-loop, you can include a single line or multiple lines in
statements.

To find out how parfor can help increase your throughput, see “Decide When to Use parfor” on page
2-2.

parfor differs from a traditional for-loop in the following ways:

• Loop iterations are executed in parallel in a nondeterministic order. This means that you might
need to modify your code to use parfor. For more help, see “Convert for-Loops Into parfor-
Loops” on page 2-7.

• Loop iterations must be consecutive, increasing integer values.
• The body of the parfor-loop must be independent. One loop iteration cannot depend on a

previous iteration, because the iterations are executed in a nondeterministic order. For more help,
see “Ensure That parfor-Loop Iterations are Independent” on page 2-10.

• You cannot use a parfor-loop inside another parfor-loop. For more help, see “Nested parfor and
for-Loops and Other parfor Requirements” on page 2-13.

parfor (loopVar = initVal:endVal,M); statements; end uses M to specify the maximum
number of workers from the parallel pool to use in evaluating statements in the loop body. M must
be a nonnegative integer.

By default, MATLAB uses the available workers in your parallel pool. You can change the number of
workers on the Home tab in the Environment section, by selecting Parallel > Parallel
Preferences. You can override the default number of workers in a parallel pool by using parpool.
When no workers are available in the pool or M is zero, MATLAB still executes the loop body in a
nondeterministic order, but not in parallel. Use this syntax to switch between parallel and serial
execution when testing your code.

With this syntax, to execute the iterations in parallel, you must have a parallel pool of workers. By
default, if you execute parfor, you automatically create a parallel pool of workers on the cluster
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defined by your default cluster profile. The default cluster is local. You can change your cluster in
Parallel Preferences. For more details, see “Specify Your Parallel Preferences” on page 5-9.

parfor (loopVar = initVal:endVal,opts); statements; end uses opts to specify the
resources to use in evaluating statements in the loop body. Create a set of parfor options using
the parforOptions function. With this approach, you can run parfor on a cluster without first
creating a parallel pool and control how parfor partitions the iterations into subranges for the
workers.

parfor (loopVar = initVal:endVal,cluster); statements; end executes statements
on workers in cluster without creating a parallel pool. This is equivalent to executing parfor
(loopVar = initVal:endVal,parforOptions(cluster)); statements; end.

Examples

Convert a for-Loop Into a parfor-Loop

Create a parfor-loop for a computationally intensive task and measure the resulting speedup.

In the MATLAB Editor, enter the following for-loop. To measure the time elapsed, add tic and toc.

tic
n = 200;
A = 500;
a = zeros(1,n);
for i = 1:n
    a(i) = max(abs(eig(rand(A))));
end
toc

Run the script, and note the elapsed time.

Elapsed time is 31.935373 seconds.

In the script, replace the for-loop with a parfor-loop.

tic
n = 200;
A = 500;
a = zeros(1,n);
parfor i = 1:n
    a(i) = max(abs(eig(rand(A))));
end
toc

Run the new script, and run it again. The first run is slower than the second run, because the parallel
pool has to be started, and you have to make the code available to the workers. Note the elapsed time
for the second run.

By default, MATLAB automatically opens a parallel pool of workers on your local machine.

Elapsed time is 10.760068 seconds. 

Observe that you speed up your calculation by converting the for-loop into a parfor-loop on four
workers. You might reduce the elapsed time further by increasing the number of workers in your
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parallel pool. For more information, see “Convert for-Loops Into parfor-Loops” on page 2-7 and “Scale
Up parfor-Loops to Cluster and Cloud” on page 2-21.

Test parfor-Loops by Switching Between Parallel and Serial Execution

You can specify the maximum number of workers M for a parfor-loop. Set M = 0 to run the body of
the loop in the desktop MATLAB, without using workers, even if a pool is open. When M = 0,
MATLAB still executes the loop body in a nondeterministic order, but not in parallel, so that you can
check whether your parfor-loops are independent and suitable to run on workers. This is the
simplest way to allow you to debug the contents of a parfor-loop. You cannot set breakpoints
directly in the body of the parfor-loop, but you can set breakpoints in functions called from the body
of the parfor-loop.

Specify M = 0 to run the body of a parfor-loop in the desktop MATLAB, even if a pool is open.

 M = 0;                     % M specifies maximum number of workers
 y = ones(1,100);
 parfor (i = 1:100,M)
      y(i) = i;
 end

To control the number of workers in your parallel pool, see “Specify Your Parallel Preferences” on
page 5-9 and parpool.

Measure Data Transferred to Workers Using a parfor-Loop

To measure how much data is transferred to and from the workers in your current parallel pool, add
ticBytes(gcp) and tocBytes(gcp) before and after the parfor-loop. Use gcp as an argument to
get the current parallel pool.

Delete your current parallel pool if you still have one.

delete(gcp('nocreate'))

tic
ticBytes(gcp);
n = 200;
A = 500;
a = zeros(1,n);
parfor i = 1:n
    a(i) = max(abs(eig(rand(A))));
end
tocBytes(gcp)
toc

Run the new script, and run it again. The first run is slower than the second run, because the parallel
pool has to be started, and you have to make the code available to the workers.

By default, MATLAB automatically opens a parallel pool of workers on your local machine.

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
...
             BytesSentToWorkers    BytesReceivedFromWorkers
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             __________________    ________________________

    1        15340                  7024                   
    2        13328                  5712                   
    3        13328                  5704                   
    4        13328                  5728                   
    Total    55324                 24168                   

You can use the ticBytes and tocBytes results to examine the amount of data transferred to and
from the workers in a parallel pool. In this example, the data transfer is small. For more information
about parfor-loops, see “Decide When to Use parfor” on page 2-2 and “Convert for-Loops Into
parfor-Loops” on page 2-7.

Run parfor on a Cluster Without a Parallel Pool

Create a cluster object using the parcluster function, and create a set of parfor options with it.
By default, parcluster uses your default cluster profile. Check your default profile on the MATLAB
Home tab, in Parallel > Select a Default Cluster.

cluster = parcluster;

To run parfor computations directly in the cluster, pass the cluster object as the second input
argument to parfor.

When you use this approach, parfor can use all the available workers in the cluster, and workers
become available as soon as the loop completes. This approach is also useful if your cluster does not
support parallel pools. If you want to control other options, including partitioning of iterations, use
parforOptions.

values = [3 3 3 7 3 3 3];
parfor (i=1:numel(values),cluster)
    out(i) = norm(pinv(rand(values(i)*1e3)));
end

Use this syntax to run parfor on a large cluster without consuming workers for longer than necessary.

Input Arguments
loopVar — Loop index
integer

Loop index variable with initial value initVal and final value endVal. The variable can be any
numeric type and the value must be an integer.

Make sure that your parfor-loop variables are consecutive increasing integers. For more help, see
“Troubleshoot Variables in parfor-Loops” on page 2-29.

The range of the parfor-loop variable must not exceed the supported range. For more help, see
“Avoid Overflows in parfor-Loops” on page 2-29.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

initVal — Initial value of loop index
integer
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Initial value loop index variable, loopVar. The variable can be any numeric type and the value must
be an integer. With endVal, specifies the parfor range vector, which must be of the form M:N.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

endVal — Final value of loop index
integer

Final value loop index variable, loopVar. The variable can be any numeric type and the value must
be an integer. With initVal, specifies the parfor range vector, which must be of the form M:N.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

statements — Loop body
text

Loop body, specified as text. The series of MATLAB commands to execute in the parfor-loop.

You might need to modify your code to use parfor-loops. For more help, see “Convert for-Loops Into
parfor-Loops” on page 2-7

Do not nest parfor-loops, see “Nested parfor and for-Loops and Other parfor Requirements” on page
2-13.

M — Maximum number of workers running in parallel
number of workers in the parallel pool (default) | nonnegative integer

Maximum number of workers running in parallel, specified as a nonnegative integer. If you specify an
upper limit, MATLAB uses no more than this number, even if additional workers are available. If you
request more workers than the number of available workers, then MATLAB uses the maximum
number of workers available at the time of the call. If the loop iterations are fewer than the number
of workers, some workers perform no work.

If parfor cannot run on multiple workers (for example, if only one core is available or M is 0),
MATLAB executes the loop in a serial manner. In this case, MATLAB still executes the loop body in a
nondeterministic order. Use this syntax to switch between parallel and serial when testing your code.

opts — parfor options
parforOptions object

parfor options, specified as a ClusterOptions object. Use the parforOptions function to create
a set of parfor options.
Example: opts = parforOptions(parcluster);

cluster — Cluster
parallel.Cluster

Cluster, specified as a parallel.Cluster object, on which parfor runs. To create a cluster object,
use the parcluster function.
Example: cluster = parcluster('local')
Data Types: parallel.Cluster
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Tips
• Use a parfor-loop when:

• You have many loop iterations of a simple calculation. parfor divides the loop iterations into
groups so that each thread can execute one group of iterations.

• You have some loop iterations that take a long time to execute.
• Do not use a parfor-loop when an iteration in your loop depends on the results of other

iterations.

Reductions are one exception to this rule. A reduction variable accumulates a value that depends
on all the iterations together, but is independent of the iteration order. For more information, see
“Reduction Variables” on page 2-42.

• When you use parfor, you have to wait for the loop to complete to obtain your results. Your client
MATLAB is blocked and you cannot break out of the loop early. If you want to obtain intermediate
results, or break out of a for-loop early, try parfeval instead.

• Unless you specify a cluster object, a parfor-loop runs on the existing parallel pool. If no pool
exists, parfor starts a new parallel pool, unless the automatic starting of pools is disabled in your
parallel preferences. If there is no parallel pool and parfor cannot start one, the loop runs
serially in the client session.

• If the AutoAttachFiles property in the cluster profile for the parallel pool is set to true,
MATLAB performs an analysis on a parfor-loop to determine what code files are necessary for its
execution, see listAutoAttachedFiles. Then MATLAB automatically attaches those files to the
parallel pool so that the code is available to the workers.

• You cannot call scripts directly in a parfor-loop. However, you can call functions that call scripts.
• Do not use clear inside a parfor loop because it violates workspace transparency. See “Ensure

Transparency in parfor-Loops or spmd Statements” on page 2-50.
• You can run Simulink models in parallel with the parsim command instead of using parfor-loops.

For more information and examples of using Simulink in parallel, see “Run Multiple Simulations”
(Simulink).

See Also
afterEach | for | gcp | listAutoAttachedFiles | parfeval | parforOptions | parpool |
send | ticBytes | tocBytes

Topics
“Decide When to Use parfor” on page 2-2
“Convert for-Loops Into parfor-Loops” on page 2-7
“Ensure That parfor-Loop Iterations are Independent” on page 2-10
“Nested parfor and for-Loops and Other parfor Requirements” on page 2-13
“Troubleshoot Variables in parfor-Loops” on page 2-29
“Scale Up parfor-Loops to Cluster and Cloud” on page 2-21
“Specify Your Parallel Preferences” on page 5-9
“Run Parallel Simulations” (Simulink)

Introduced in R2008a
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parforOptions
Options for parfor, such as partitioning iterations

Syntax
opts = parforOptions(cluster)
opts = parforOptions(pool)
opts = parforOptions( ___ ,'RangePartitionMethod',method)
opts = parforOptions( ___ ,'RangePartitionMethod','fixed','SubrangeSize',n)
opts = parforOptions(cluster, ___ ,Name,Value)

Description
opts = parforOptions(cluster) creates a set of options for parfor that instructs parfor to
execute statements on workers in cluster without creating a parallel pool. Instead, parfor submits
independent tasks to the cluster to execute the body of the loop. parfor partitions and distributes
iterations to workers according to the NumWorkers property, the number of workers available, of
cluster.

opts = parforOptions(pool) creates a set of options for parfor that instructs parfor to
execute statements on workers in the parallel pool pool.

opts = parforOptions( ___ ,'RangePartitionMethod',method) uses method to define how
to divide parfor-loop iterations into subranges. A subrange is a contiguous block of loop iterations
that parfor executes as a group on a worker.

opts = parforOptions( ___ ,'RangePartitionMethod','fixed','SubrangeSize',n)
divides parfor-loop iterations into subranges of size no larger than n.

opts = parforOptions(cluster, ___ ,Name,Value) specifies additional options for use with
the cluster object cluster.

Examples

Run parfor on a Cluster Without a Parallel Pool

Create a cluster object using the parcluster function, and create a set of parfor options with it.
By default, parcluster uses your default cluster profile. Check your default profile on the
MATLAB® Home tab, in Parallel > Select a Default Cluster.

cluster = parcluster;
opts = parforOptions(cluster);

To run parfor computations directly in the cluster, pass the parfor options as the second input
argument to parfor.

When you use this approach, parfor can use all the available workers in the cluster, and workers
become available as soon as the loop completes. This approach is also useful if your cluster does not
support parallel pools.

10 Functions

10-274



values = [3 3 3 7 3 3 3];
parfor (i=1:numel(values),opts)
    out(i) = norm(pinv(rand(values(i)*1e3)));
end

Use this syntax to run parfor on a large cluster without consuming workers for longer than necessary.

Control parfor Range Partitioning

You can control how parfor divides iterations into subranges for the workers with parforOptions.
Controlling the range partitioning can optimize performance of a parfor-loop. For best performance,
try to split into subranges that are:

• Large enough that the computation time is large compared to the overhead of scheduling the
subrange

• Small enough that there are enough subranges to keep all workers busy

To partition iterations into subranges of fixed size, create a set of parfor options, set
'RangePartitionMethod' to 'fixed', and specify a subrange size with 'SubrangeSize'.

opts = parforOptions(parcluster,'RangePartitionMethod','fixed','SubrangeSize',2);

Pass the parfor options as the second input argument to parfor. In this case, parfor divides
iterations into three groups of 2 iterations.

values = [3 3 3 3 3 3];
parfor (i=1:numel(values),opts)
    out(i) = norm(pinv(rand(values(i)*1e3)));
end

To partition iterations into subranges of varying size, pass a function handle to the
'RangePartitionMethod' name-value pair. This function must return a vector of subrange sizes,
and their sum must be equal to the number of iterations. For more information on this syntax, see
“method” on page 10-0 .

opts = parforOptions(parcluster,'RangePartitionMethod', @(n,nw) [2 1 1 2]);

Pass the parfor options as the second input argument to parfor. In this case, parfor divides
iterations into four groups of 2, 1, 1, and 2 iterations.

values = [3 3 7 7 3 3];
parfor (i=1:numel(values),opts)
    out(i) = norm(pinv(rand(values(i)*1e3)));
end

Run parfor on a Parallel Pool and Control Options

You can use parforOptions to run parfor on the workers of a parallel pool. Use this approach
when you want to reserve a fixed number of workers for the parfor-loop. You can also have finer
control on how parfor divides iterations for workers.
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Create a parallel pool using the parpool function. By default, parpool uses your default cluster
profile. Check your default profile on the MATLAB Home tab, in Parallel > Select a Default
Cluster. Create a set of parfor options with the parallel pool object, and specify options. For
example, specify subranges of fixed size 2 as the partitioning method.

p = parpool;

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

opts = parforOptions(p,'RangePartitionMethod','fixed','SubrangeSize',2);

Pass the parfor options as the second input argument to the parfor function. parfor runs the loop
body on the parallel pool and divides iterations according to opts.

values = [3 3 3 3 3 3];
parfor (i=1:numel(values),opts)
    out(i) = norm(pinv(rand(values(i)*1e3)));
end

Transfer Files to parfor Workers

When you run parfor with or without a parallel pool, by default, MATLAB performs an automatic
dependency analysis on the loop body. MATLAB transfers required files to the workers before running
the statements. In some cases, you must explicitly transfer those files to the workers. For more
information, see “Identify Program Dependencies” (MATLAB).

If you are using parfor without a parallel pool, use parforOptions to transfer files. Create a
cluster object using the parcluster option. Create a set of parfor options with the cluster object
using the parforOptions function. To transfer files to the workers, use the 'AttachedFiles'
name-value pair.

cluster = parcluster;
opts = parforOptions(cluster,'AttachedFiles',{'myFile.dat'});

Pass the parfor options as the second input argument to the parfor function. The workers can
access the required files in the loop body.

parfor (i=1:2,opts)
    M = csvread('myFile.dat',0,2*(i-1),[0,2*(i-1),1,1+2*(i-1)]);
    out(i) = norm(rand(ceil(norm(M))*1e3));
end

Input Arguments
cluster — Cluster
parallel.Cluster object

Cluster, specified as a parallel.Cluster object, on which parfor runs. To create a cluster object,
use the parcluster function.
Example: opts = parforOptions(parcluster('local'));
Data Types: parallel.Cluster
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n — Subrange size
positive integer

Subrange size for the fixed partitioning method, specified as a positive integer. You must set the
name-value pair 'RangePartitionMethod' to 'fixed'.
Example: opts =
parforOptions(cluster,'RangePartitionMethod','fixed','SubrangeSize',5);

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

pool — Parallel pool
parallel.Pool object

Parallel pool, specified as a parallel.Pool object, on which parfor runs. To create a parallel pool,
use the parpool function.
Example: opts = parforOptions(parpool('local'));
Data Types: parallel.Pool

method — Range partition method
'auto' (default) | 'fixed' | function handle

Range partition method, specified as one of the following:

• 'auto' – This method divides the loop into subranges of varying sizes. It tries to achieve good
performance for a variety of parfor-loops.

• 'fixed' – Partition the parfor-loop into subranges of fixed sizes. You must specify the size of
each subrange by setting the 'SubrangeSize' name-value pair.

• function handle – Use a function handle to divide the loop iterations into subranges. The function
must be of the form sizes = customFcn(n,nw), where n is the number of iterations in the
parfor-loop, and nw is the number of workers available to execute the loop. When the loop is
running on a parallel pool, nw is the number of workers in the parallel pool. When the loop is
running using a cluster, nw is the NumWorkers property of the cluster. customFcn returns a
vector sizes of subrange sizes. This vector must satisfy sum(sizes) == n. For more
information on function handles, see “Create Function Handle” (MATLAB).

Example: opts =
parforOptions(cluster,'RangePartitionMethod','fixed','SubrangeSize',10);

Example: opts = parforOptions(cluster,'RangePartitionMethod',@(n,nw)
[2,4,4,n-10]);

Data Types: char | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: opts = parforOptions(cluster,'AttachedFiles',{'myFile.dat'});

AutoAddClientPath — Flag to specify if client path is added to worker path
true (default) | false
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Flag to specify if client path is added to worker path, specified as the comma-separated pair
consisting of AutoAddClientPath and true or false.
Data Types: logical

AutoAttachFiles — Flag to enable dependency analysis
true (default) | false

Flag to enable dependency analysis on the parfor-loop body and transfer required files to the
workers, specified as the comma-separated pair consisting of AutoAttachFiles and true or
false.
Data Types: logical

AttachedFiles — Files to transfer
character vector | string scalar | string array | cell array of character vectors

Files to transfer to the workers, specified as the comma-separated pair consisting of AttachedFiles
and a character vector, string, string array, or cell array of character vectors.
Example: {'myFun.m','myFun2.m'}
Data Types: char | string | cell

AdditionalPaths — Paths to add to workers
character vector | string scalar | string array | cell array of character vectors

Paths to add to the MATLAB path of the workers before parfor executes, specified as the comma-
separated pair consisting of AdditionalPaths and a character vector, string, string array, or cell
array of character vectors.
Example: {'some/path/','another/path'}
Data Types: char | string | cell

Output Arguments
opts — parfor options
parforOptions object

parfor options, returned as a parforOptions object. To specify options for a parfor-loop, pass a
set of parfor options to the second input argument of parfor.
Example: parfor(i=1:10,parforOptions(parcluster)); out(i)=i; end

See Also
parcluster | parfor | parpool

Topics
“Profile Parallel Code”

Introduced in R2019a
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parpool
Create parallel pool on cluster

Syntax
parpool
parpool(poolsize)
parpool(resources)
parpool(resources,poolsize)
parpool( ___ ,Name,Value)
poolobj = parpool( ___ )

Description
parpool starts a parallel pool of workers using the default cluster profile. With default preferences,
MATLAB starts a pool on the local machine with one worker per physical CPU core, up to the
preferred number of workers. For more information on parallel preferences, see “Specify Your
Parallel Preferences” on page 5-9.

In general, the pool size is specified by your parallel preferences and the default profile. parpool
creates a pool on the default cluster with its NumWorkers in the range [1,
preferredNumWorkers] for running parallel language features. preferredNumWorkers is the
value defined in your parallel preferences. For all factors that can affect your pool size, see “Pool Size
and Cluster Selection” on page 2-59.

parpool enables the full functionality of the parallel language features in MATLAB by creating a
special job on a pool of workers, and connecting the MATLAB client to the parallel pool. Parallel
language features include parfor, parfeval, parfevalOnAll, spmd, and distributed. If
possible, the working folder on the workers is set to match that of the MATLAB client session.

parpool(poolsize) creates and returns a pool with the specified number of workers. poolsize
can be a positive integer or a range specified as a 2-element vector of integers. If poolsize is a
range, the resulting pool has size as large as possible in the range requested.

Specifying the poolsize overrides the number of workers specified in the preferences or profile, and
starts a pool of exactly that number of workers, even if it has to wait for them to be available. Most
clusters have a maximum number of workers they can start. If the profile specifies a MATLAB Job
Scheduler cluster, parpool reserves its workers from among those already running and available
under that MATLAB Job Scheduler. If the profile specifies a local or third-party scheduler, parpool
instructs the scheduler to start the workers for the pool.

parpool(resources) or parpool(resources,poolsize) starts a worker pool on the resources
specified by resources.

parpool( ___ ,Name,Value) applies the specified values for certain properties when starting the
pool.

poolobj = parpool( ___ ) returns a parallel.Pool object to the client workspace representing the
pool on the cluster. You can use the pool object to programmatically delete the pool or to access its
properties. Use delete(pool) to shut down the parallel pool.
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Examples

Create Pool from Default Profile

Start a parallel pool using the default profile to define the number of workers. With default
preferences, the default pool is on the local machine.

parpool

Create Pool on Local Machine

You can create pools on different types of parallel environments on your local machine.

• Start a parallel pool of process workers.

parpool('local')

• Start a parallel pool of thread workers.

parpool('threads')

Fore more information on parallel environments, see “Choose Between Thread-Based and Process-
Based Environments” on page 2-61.

Create Pool from Specified Profile

Start a parallel pool of 16 workers using a profile called myProf.

parpool('myProf',16)

Create Pool on Specified Cluster

Create an object representing the cluster identified by the default profile, and use that cluster object
to start a parallel pool. The pool size is determined by the default profile.

c = parcluster
parpool(c)

Create Pool and Attach Files

Start a parallel pool with the default profile, and pass two code files to the workers.

parpool('AttachedFiles',{'mod1.m','mod2.m'})

Return Pool Object and Delete Pool

Create a parallel pool with the default profile, and later delete the pool.
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poolobj = parpool;

delete(poolobj)

Determine Size of Current Pool

Find the number of workers in the current parallel pool.

poolobj = gcp('nocreate'); % If no pool, do not create new one.
if isempty(poolobj)
    poolsize = 0;
else
    poolsize = poolobj.NumWorkers
end

Input Arguments
poolsize — Size of parallel pool
positive integer | 2-element vector of integers

Size of the parallel pool, specified as a positive integer or a range specified as a 2-element vector of
integers. If poolsize is a range, the resulting pool has size as large as possible in the range
requested. Set the default preferred number of workers in the parallel preferences or parallel profile.
Example: parpool('local',2)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

resources — Resources to start pool on
'local' (default) | 'threads' | profile name | cluster object

Resources to start the pool on, specified as 'local', 'threads', a cluster profile name or cluster
object.

• 'local' – Starts a pool of process workers on the local machine. For more information on
process-based environments, see “Choose Between Thread-Based and Process-Based
Environments” on page 2-61.

• 'threads' – Starts a pool of thread workers on the local machine. For more information on
thread-based environments, see “Choose Between Thread-Based and Process-Based
Environments” on page 2-61.

• Profile name – Starts a pool on the cluster specified by the profile. For more information on cluster
profiles, see “Discover Clusters and Use Cluster Profiles” on page 5-11.

• Cluster object – Starts a pool on the cluster specified by the cluster object. Use parcluster to
get a cluster object.

Example: parpool('local')
Example: parpool('threads')
Example: parpool('myClusterProfile',16)
Example: c = parcluster; parpool(c)
Data Types: char | string | parallel.Cluster
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'AttachedFiles',{'myFun.m'}

AttachedFiles — Files to attach to pool
character vector | string scalar | string array | cell array of character vectors

Files to attach to pool, specified as a character vector, string or string array, or cell array of character
vectors.

With this argument pair, parpool starts a parallel pool and passes the identified files to the workers
in the pool. The files specified here are appended to the AttachedFiles property specified in the
applicable parallel profile to form the complete list of attached files. The 'AttachedFiles' property
name is case sensitive, and must appear as shown.
Example: {'myFun.m','myFun2.m'}
Data Types: char | cell

AutoAddClientPath — Specifies if client path is added to worker path
true (default) | false

A logical value (true or false) that controls whether user-added-entries on the client's path are
added to each worker's path at startup. By default 'AutoAddClientPath' is set to true.
Data Types: logical

EnvironmentVariables — Environment variables copied to workers
character vector | string scalar | string array | cell array of character vectors

Names of environment variables to copy from the client session to the workers, specified as a
character vector, string or string array, or cell array of character vectors. The names specified here
are appended to the 'EnvironmentVariables' property specified in the applicable parallel profile
to form the complete list of environment variables. Any variables listed which are not set are not
copied to the workers. These environment variables are set on the workers for the duration of the
parallel pool.
Data Types: char | cell

SpmdEnabled — Indication if pool is enabled to support SPMD
true (default) | false

Indication if pool is enabled to support SPMD, specified as a logical. You can disable support only on a
local or MATLAB Job Scheduler cluster. Because parfor iterations do not involve interworker
communication, disabling SPMD support this way allows the parallel pool to keep evaluating a
parfor-loop even if one or more workers aborts during loop execution.
Data Types: logical

IdleTimeout — Time after which the pool shuts down if idle
nonnegative integer

Time in minutes after which the pool shuts down if idle, specified as an integer greater than zero. A
pool is idle if it is not running code on the workers. By default 'IdleTimeout' is the same as the
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value in your parallel preferences. For more information on parallel preferences, see “Specify Your
Parallel Preferences” on page 5-9.
Example: pool = parpool('IdleTimeout',120)

Output Arguments
poolobj — Access to parallel pool from client
parallel.Pool object

Access to parallel pool from client, returned as a parallel.Pool object.

Tips
• The pool status indicator in the lower-left corner of the desktop shows the client session

connection to the pool and the pool status. Click the icon for a menu of supported pool actions.

With a pool running:  With no pool running:
• If you set your parallel preferences to automatically create a parallel pool when necessary, you do

not need to explicitly call the parpool command. You might explicitly create a pool to control
when you incur the overhead time of setting it up, so the pool is ready for subsequent parallel
language constructs.

• delete(poolobj) shuts down the parallel pool. Without a parallel pool, spmd and parfor run as
a single thread in the client, unless your parallel preferences are set to automatically start a
parallel pool for them.

• When you use the MATLAB editor to update files on the client that are attached to a parallel pool,
those updates automatically propagate to the workers in the pool. (This automatic updating does
not apply to Simulink model files. To propagate updated model files to the workers, use the
updateAttachedFiles function.)

• If possible, the working folder on the workers is initially set to match that of the MATLAB client
session. Subsequently, the following commands entered in the client Command Window also
execute on all the workers in the pool:

• cd
• addpath
• rmpath

This behavior allows you to set the working folder and the command search path on all the
workers, so that subsequent pool activities such as parfor-loops execute in the proper context.

When changing folders or adding a path with cd or addpath on clients with Windows operating
systems, the value sent to the workers is the UNC path for the folder if possible. For clients with
Linux operating systems, it is the absolute folder location.

If any of these commands does not work on the client, it is not executed on the workers either. For
example, if addpath specifies a folder that the client cannot access, the addpath command is not
executed on the workers. However, if the working folder can be set on the client, but cannot be set
as specified on any of the workers, you do not get an error message returned to the client
Command Window.
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Be careful of this slight difference in behavior in a mixed-platform environment where the client is
not the same platform as the workers, where folders local to or mapped from the client are not
available in the same way to the workers, or where folders are in a nonshared file system. For
example, if you have a MATLAB client running on a Microsoft Windows operating system while the
MATLAB workers are all running on Linux operating systems, the same argument to addpath
cannot work on both. In this situation, you can use the function pctRunOnAll to assure that a
command runs on all the workers.

Another difference between client and workers is that any addpath arguments that are part of
the matlabroot folder are not set on the workers. The assumption is that the MATLAB install
base is already included in the workers’ paths. The rules for addpath regarding workers in the
pool are:

• Subfolders of the matlabroot folder are not sent to the workers.
• Any folders that appear before the first occurrence of a matlabroot folder are added to the

top of the path on the workers.
• Any folders that appear after the first occurrence of a matlabroot folder are added after the

matlabroot group of folders on the workers’ paths.

For example, suppose that matlabroot on the client is C:\Applications\matlab\. With an
open parallel pool, execute the following to set the path on the client and all workers:

addpath('P1',
        'P2',
        'C:\Applications\matlab\T3',
        'C:\Applications\matlab\T4',
        'P5',
        'C:\Applications\matlab\T6',
        'P7',
        'P8');

Because T3, T4, and T6 are subfolders of matlabroot, they are not set on the workers’ paths. So
on the workers, the pertinent part of the path resulting from this command is:

P1
P2
<worker original matlabroot folders...>
P5
P7
P8

• If you are using Macintosh or Linux, and see problems during large parallel pool creation, see
“Recommended System Limits for Macintosh and Linux” on page 2-71.

See Also
Composite | delete | distributed | gcp | parallel.defaultClusterProfile |
parallel.pool.Constant | parcluster | parfeval | parfevalOnAll | parfor | pctRunOnAll
| spmd

Topics
“Specify Your Parallel Preferences” on page 5-9
“Discover Clusters and Use Cluster Profiles” on page 5-11
“Pass Data to and from Worker Sessions” on page 6-14
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Introduced in R2013b
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pause
Pause MATLAB Job Scheduler queue

Syntax
pause(mjs)

Arguments
mjs MATLAB Job Scheduler object whose queue is paused.

Description
pause(mjs) pauses the MATLAB Job Scheduler’s queue so that jobs waiting in the queued state will
not run. Jobs that are already running also pause, after completion of tasks that are already running.
No further jobs or tasks will run until the resume function is called for the MATLAB Job Scheduler.

The pause function does nothing if the MATLAB Job Scheduler is already paused.

See Also
resume | wait

Topics
“Program Independent Jobs for a Supported Scheduler” on page 6-7

Introduced before R2006a
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pctconfig
Configure settings for Parallel Computing Toolbox client session

Syntax
pctconfig('p1',v1,...)
config = pctconfig('p1',v1,...)
config = pctconfig()

Arguments
p1 Property to configure. Supported properties are 'portrange',

'hostname'.
v1 Value for corresponding property.
config Structure of configuration value.

Description
pctconfig('p1',v1,...) sets the client configuration property p1 with the value v1.

Note that the property value pairs can be in any format supported by the set function, i.e., param-
value character vector pairs, structures, and param-value cell array pairs. If a structure is used, the
structure field names are the property names and the field values specify the property values.

If the property is 'portrange', the specified value is used to set the range of ports to be used by the
client session of Parallel Computing Toolbox software. This is useful in environments with a limited
choice of ports. The value of 'portrange' should either be a 2-element vector [minport,
maxport] specifying the range, or 0 to specify that the client session should use ephemeral ports. By
default, the client session searches for available ports to communicate with the other sessions of
MATLAB Parallel Server software.

If the property is 'hostname', the specified value is used to set the hostname for the client session
of Parallel Computing Toolbox software. This is useful when the client computer is known by more
than one hostname. The value you should use is the hostname by which the cluster nodes can contact
the client computer. The toolbox supports both short hostnames and fully qualified domain names.

config = pctconfig('p1',v1,...) returns a structure to config. The field names of the
structure reflect the property names, while the field values are set to the property values.

config = pctconfig(), without any input arguments, returns all the current values as a structure
to config. If you have not set any values, these are the defaults.

Examples
View the current settings for hostname and ports.

config = pctconfig()
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config = 
    portrange: [27370 27470]
     hostname: 'machine32'

Set the current client session port range to 21000-22000 with hostname fdm4.

pctconfig('hostname','fdm4','portrange',[21000 22000]);

Set the client hostname to a fully qualified domain name.

pctconfig('hostname','desktop24.subnet6.companydomain.com');

Tips
The values set by this function do not persist between MATLAB sessions. To guarantee its effect, call
pctconfig before calling any other Parallel Computing Toolbox functions.

Introduced in R2008a
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pctRunDeployedCleanup
Clean up after deployed parallel applications

Syntax
pctRunDeployedCleanup

Description
pctRunDeployedCleanup performs necessary cleanup so that the client JVM can properly
terminate when the deployed application exits. All deployed applications that use Parallel Computing
Toolbox functionality need to call pctRunDeployedCleanup after the last call to Parallel Computing
Toolbox functionality.

After calling pctRunDeployedCleanup, you should not use any further Parallel Computing Toolbox
functionality in the current MATLAB session.

Introduced in R2010a
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pctRunOnAll
Run command on client and all workers in parallel pool

Syntax
pctRunOnAll command

Description
pctRunOnAll command runs the specified command on all the workers of the parallel pool as well as
the client, and prints any command-line output back to the client Command Window. The specified
command runs in the base workspace of the workers and does not have any return variables. This is
useful if there are setup changes that need to be performed on all the workers and the client.

Note If you use pctRunOnAll to run a command such as addpath in a mixed-platform environment,
it can generate a warning on the client while executing properly on the workers. For example, if your
workers are all running on Linux operating systems and your client is running on a Microsoft
Windows operating system, an addpath argument with Linux-based paths will warn on the Windows-
based client.

Examples
Clear all loaded functions on all workers:

pctRunOnAll clear functions

Change the directory on all workers to the project directory:

pctRunOnAll cd /opt/projects/c1456

Add some directories to the paths of all the workers:

pctRunOnAll addpath({'/usr/share/path1' '/usr/share/path2'})

See Also
parpool

Introduced in R2008a
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pload
(To be removed) Load file into parallel session

Note pload will be removed in a future release. Use dload instead. For more information, see
“pload and psave will be removed”.

Syntax
pload(fileroot)

Arguments
fileroot Part of filename common to all saved files being loaded.

Description
pload(fileroot) loads the data from the files named [fileroot num2str(labindex)] into the
workers running a communicating job. The files should have been created by the psave command.
The number of workers should be the same as the number of files. The files should be accessible to all
the workers. Any codistributed arrays are reconstructed by this function. If fileroot contains an
extension, the character representation of the labindex will be inserted before the extension. Thus,
pload('abc') attempts to load the file abc1.mat on worker 1, abc2.mat on worker 2, and so on.

Examples
Create three variables — one replicated, one variant, and one codistributed. Then save the data. (This
example works in a communicating job or in pmode, but not in a parfor or spmd block.)

clear all;
rep = speye(numlabs);
var = magic(labindex);
D = eye(numlabs,codistributor());
psave('threeThings');

This creates three files (threeThings1.mat, threeThings2.mat, threeThings3.mat) in the
current working directory.

Clear the workspace on all the workers and confirm there are no variables.

clear all
whos

Load the previously saved data into the workers. Confirm its presence.

pload('threeThings');
whos
isreplicated(rep)
iscodistributed(D)
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Compatibility Considerations
pload and psave will be removed
Warns starting in R2020a

In a future release, the psave and pload functions will be removed. To save and load data on the
workers, in the form of Composite arrays or distributed arrays, use dsave and dload instead.

See Also
dload | labindex | load | numlabs | pmode | psave | save

Introduced in R2006b

10 Functions

10-292



pmode
(To be removed) Interactive Parallel Command Window

Note pmode will be removed in a future release. Use spmd instead. For more information, see
“pmode will be removed”.

Syntax
pmode start
pmode start numworkers
pmode start prof numworkers
pmode quit
pmode exit
pmode client2lab clientvar workers workervar
pmode lab2client workervar worker clientvar
pmode cleanup prof

Description
pmode allows the interactive parallel execution of MATLAB commands. pmode achieves this by
defining and submitting a communicating job, and opening a Parallel Command Window connected to
the workers running the job. The workers then receive commands entered in the Parallel Command
Window, process them, and send the command output back to the Parallel Command Window.
Variables can be transferred between the MATLAB client and the workers.

pmode start starts pmode, using the default profile to define the cluster and number of workers.
(The initial default profile is local; you can change it by using the function
parallel.defaultClusterProfile.) You can also specify the number of workers using pmode
start numworkers.

pmode start prof numworkers starts pmode using the Parallel Computing Toolbox profile prof
to locate the cluster, submits a communicating job with the number of workers identified by
numworkers, and connects the Parallel Command Window with the workers. If the number of
workers is specified, it overrides the minimum and maximum number of workers specified in the
profile.

pmode quit or pmode exit stops the pmode job, deletes it, and closes the Parallel Command
Window. You can enter this command at the MATLAB prompt or the pmode prompt.

pmode client2lab clientvar workers workervar copies the variable clientvar from the
MATLAB client to the variable workervar on the workers identified by workers. If workervar is
omitted, the copy is named clientvar. workers can be either a single index or a vector of indices.
You can enter this command at the MATLAB prompt or the pmode prompt.

pmode lab2client workervar worker clientvar copies the variable workervar from the
worker identified by worker, to the variable clientvar on the MATLAB client. If clientvar is
omitted, the copy is named workervar. You can enter this command at the MATLAB prompt or the
pmode prompt. Note: If you use this command in an attempt to transfer a codistributed array to the
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client, you get a warning, and only the local portion of the array on the specified worker is
transferred. To transfer an entire codistributed array, first use the gather function to assemble the
whole array into the worker workspaces.

pmode cleanup prof deletes all communicating jobs created by pmode for the current user
running on the cluster specified in the profile prof, including jobs that are currently running. The
profile is optional; the default profile is used if none is specified. You can enter this command at the
MATLAB prompt or the pmode prompt.

You can invoke pmode as either a command or a function, so the following are equivalent.

pmode start prof 4
pmode('start','prof',4)

Examples
In the following examples, the pmode prompt (P>>) indicates commands entered in the Parallel
Command Window. Other commands are entered in the MATLAB Command Window.

Start pmode using the default profile to identify the cluster and number of workers.

pmode start

Start pmode using the local profile with four local workers.

pmode start local 4

Start pmode using the profile myProfile and eight workers on the cluster.

pmode start myProfile 8

Execute a command on all workers.

P>> x = 2*labindex;

Copy the variable x from worker 7 to the MATLAB client.

pmode lab2client x 7

Copy the variable y from the MATLAB client to workers 1 through 8.

pmode client2lab y 1:8

Display the current working directory of each worker.

P>> pwd

Compatibility Considerations
pmode will be removed
Warns starting in R2020a

In a future release, the pmode function will be removed. To execute commands interactively on
multiple workers, use spmd instead.
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See Also
createCommunicatingJob | parallel.defaultClusterProfile | parcluster | spmd

Introduced in R2006b
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poll
Retrieve data sent from a worker

Syntax
poll(pollablequeue)
[data, OK] = poll(pollablequeue, timeout)

Description
poll(pollablequeue) retrieves the result of a message or data sent from a worker to the
parallel.pool.PollableDataQueue specified by pollablequeue. You can use poll only in the
process where you created the data queue.

[data, OK] = poll(pollablequeue, timeout) returns data, and OK as a boolean true to
indicate that data has been returned. If there is no data in the queue, then an empty array is returned
with a boolean false for OK. Specify timeout in seconds as an optional second parameter. In that
case, the method might block for the time specified by timeout before returning. If any data arrives
in the queue during that period, that data is returned.

Examples

Send a Message in a parfor-loop, and Poll for the Result

Construct a PollableDataQueue.

p = parallel.pool.PollableDataQueue;

Start a parfor-loop, and send a message, such as data with the value 1.

parfor i = 1
    send(p, i); 
end

Poll for the result.

poll(p)

1

For more details on sending data using a PollableDataQueue, see send.

Send and Poll for Data while Using parfeval

This example shows how to return intermediate results from a worker to the client and to display the
result on the client.

Construct a PollableDataQueue. A PollableDataQueue is most useful for sending and polling for
data during asynchronous function evaluations using parfeval or parfevalOnAll.
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q = parallel.pool.PollableDataQueue;

Start a timer and send the data queue as input to the function for parfeval execution on the pool.
Display the time elapsed and the data returned.

f = parfeval(@workerFcn, 0, q);
msgsReceived = 0;
starttime = tic;
while msgsReceived < 2
    [data, gotMsg] = poll(q, 1);
    if gotMsg
        fprintf('Got message: %s after %.3g seconds\n', ...
            data, toc(starttime));
        msgsReceived = msgsReceived + 1;
    else
        fprintf('No message available at %.3g seconds\n', ...
            toc(starttime));
    end
end

function workerFcn(q)
    send(q, 'start');
    pause(3);
    send(q, 'stop');
end

Got message: start after 0.39 seconds
No message available at 1.48 seconds
No message available at 2.56 seconds
Got message: stop after 3.35 seconds

The first message is returned in 0.39 s after you have executed parfeval. In that time the data and
function for parfeval have been serialized, sent over to the workers, deserialized and set running.
When you start the code, the worker sends some data, which is serialized, sent over the network back
to the client and put on a data queue. poll notes this operation and returns the value to the client
function. Then the time taken since parfeval was called is displayed. Note a delay of 3 s while the
worker is computing something (in this case a long pause).

Input Arguments
pollablequeue — Pollable data queue
parallel.pool.PollableDataQueue

Pollable data queue, specified as a parallel.pool.PollableDataQueue object.
Example: [data, OK] = poll(pollablequeue, optionalTimeout);

timeout — Optional timeout
scalar

Optional timeout interval (in seconds) used to block poll before returning, specified as a scalar.
Example: [data, OK] = poll(pollablequeue, timeout);
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Output Arguments
data — Message or data
scalar | vector | matrix | array | string | character vector

Message or data from workers to a data queue, specified as any serializable value.
Example: [data, OK] = poll(pollablequeue, timeout);

OK — Check if data has been returned
Boolean

Check if data has been returned, returned as a Boolean value. If data has been returned, then OK is
assigned the value of a boolean true. If there is no data in the queue pollablequeue, then an
empty array is returned and a boolean false for OK.
Example: [data, OK] = poll(pollablequeue, timeout);

See Also
DataQueue | afterEach | parallel.pool.PollableDataQueue | parfeval | parfevalOnAll |
parfor | parpool | send

Introduced in R2017a
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poolStartup
File for user-defined options to run on each worker when parallel pool starts

Syntax
poolStartup

Description
poolStartup runs automatically on a worker each time the worker forms part of a parallel pool. You
do not call this function from the client session, nor explicitly as part of a task function.

You add MATLAB code to the poolStartup.m file to define pool initialization on the worker. The
worker looks for poolStartup.m in the following order, executing the one it finds first:

1 Included in the job's AttachedFiles property.
2 In a folder included in the job's AdditionalPaths property.
3 In the worker’s MATLAB installation at the location

matlabroot/toolbox/parallel/user/poolStartup.m

To create a version of poolStartup.m for AttachedFiles or AdditionalPaths, copy the
provided file and modify it as required. .

poolStartup is the ideal location for startup code required for parallel execution on the parallel
pool. For example, you might want to include code for using mpiSettings. Because jobStartup
and taskStartup execute before poolStartup, they are not suited to pool-specific code. In other
words, you should use taskStartup for setup code on your worker regardless of whether the task is
from an independent job, communicating job, or using a parallel pool; while poolStartup is for
setup code for pool usage only.

For further details on poolStartup and its implementation, see the text in the installed
poolStartup.m file.

See Also
jobStartup | taskFinish | taskStartup

Introduced in R2010a
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promote
Promote job in MATLAB Job Scheduler cluster queue

Syntax
promote(c,job)

Arguments
c The MATLAB Job Scheduler cluster object that contains the job.
job Job object promoted in the queue.

Description
promote(c,job) promotes the job object job, that is queued in the MATLAB Job Scheduler cluster
c.

If job is not the first job in the queue, promote exchanges the position of job and the previous job.

Examples
Create and submit multiple jobs to the cluster identified by the default cluster profile, assuming that
the default cluster profile uses an MATLAB Job Scheduler:

c = parcluster();
pause(c) % Prevent submissions from running.

j1 = createJob(c,'Name','Job A');
j2 = createJob(c,'Name','Job B');
j3 = createJob(c,'Name','Job C');
submit(j1);submit(j2);submit(j3);

Promote Job C by one position in its queue:

promote(c,j3)

Examine the new queue sequence:

[pjobs,qjobs,rjobs,fjobs] = findJob(c);
get(qjobs,'Name')

    'Job A'
    'Job C'
    'Job B'

Tips
After a call to promote or demote, there is no change in the order of job objects contained in the
Jobs property of the MATLAB Job Scheduler cluster object. To see the scheduled order of execution
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for jobs in the queue, use the findJob function in the form [pending queued running
finished] = findJob(c).

See Also
createJob | demote | findJob | submit

Introduced before R2006a
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psave
(To be removed) Save data from communicating job session

Note psave will be removed in a future release. Use dsave instead. For more information, see
“pload and psave will be removed”.

Syntax
psave(fileroot)

Arguments
fileroot Part of filename common to all saved files.

Description
psave(fileroot) saves the data from the workers’ workspace into the files named [fileroot
num2str(labindex)]. The files can be loaded by using the pload command with the same
fileroot, which should point to a folder accessible to all the workers. If fileroot contains an
extension, the character representation of the labindex is inserted before the extension. Thus,
psave('abc') creates the files 'abc1.mat', 'abc2.mat', etc., one for each worker.

Examples
Create three arrays — one replicated, one variant, and one codistributed. Then save the data. (This
example works in a communicating job or in pmode, but not in a parfor or spmd block.)

clear all;
rep = speye(numlabs);
var = magic(labindex);
D = eye(numlabs,codistributor());
psave('threeThings');

This creates three files (threeThings1.mat, threeThings2.mat, threeThings3.mat) in the
current working folder.

Clear the workspace on all the workers and confirm there are no variables.

clear all
whos

Load the previously saved data into the workers. Confirm its presence.

pload('threeThings');
whos
isreplicated(rep)
iscodistributed(D)
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Compatibility Considerations
pload and psave will be removed
Warns starting in R2020a

In a future release, the psave and pload functions will be removed. To save and load data on the
workers, in the form of Composite arrays or distributed arrays, use dsave and dload instead.

See Also
dsave | labindex | load | numlabs | pload | pmode | save

Introduced in R2006b
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rand
Array of rand values

Syntax
R = rand(sz,arraytype)
R = rand(sz,datatype,arraytype)

R = rand(sz,'like',P)
R = rand(sz,datatype,'like',P)

C = rand(sz,codist)
C = rand(sz,datatype,codist)
C = rand(sz, ___ ,codist,'noCommunication')
C = rand(sz, ___ ,codist,'like',P)

Description
R = rand(sz,arraytype) creates a matrix with underlying class of double, with rand values in all
elements.

R = rand(sz,datatype,arraytype) creates a matrix with underlying class of datatype, with
rand values in all elements.

The size and type of array are specified by the argument options according to the following table.

Argument Values Descriptions

sz

n Specifies size as an n-by-n matrix.
m,n or [m n] Specifies size as an m-by-n matrix.
m,n,...,k or [m
n ... k]

Specifies size as an m-by-n-by-...-by-k array.

arraytype

'distributed' Specifies distributed array.

'codistributed' Specifies codistributed array, using the default
distribution scheme.

'gpuArray' Specifies gpuArray.

datatype 'double' (default),
'single'

Specifies underlying class of the array, i.e., the data
type of its elements.

R = rand(sz,'like',P) creates an array of rand values with the same type and underlying class
(data type) as array P.

R = rand(sz,datatype,'like',P) creates an array of rand values with the specified underlying
class (datatype), and the same type as array P.

C = rand(sz,codist) or C = rand(sz,datatype,codist) creates a codistributed array of
rand values with the specified size and underlying class (the default datatype is 'double'). The
codistributor object codist specifies the distribution scheme for creating the codistributed array. For
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information on constructing codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc. To use the default distribution scheme, you can specify a codistributor
constructor without arguments. For example:

spmd
    C = rand(8,codistributor1d());
end

C = rand(sz, ___ ,codist,'noCommunication') specifies that no interworker communication
is to be performed when constructing a codistributed array, skipping some error checking steps.

C = rand(sz, ___ ,codist,'like',P) creates a codistributed array of rand values with the
specified size, underlying class, and distribution scheme. If either the class or codistributor argument
is omitted, the characteristic is acquired from the codistributed array P.

Examples
Create Distributed Rand Matrix

Create a 1000-by-1000 distributed array of rands with underlying class double:

D = rand(1000,'distributed');

Create Codistributed Rand Matrix

Create a 1000-by-1000 codistributed double matrix of rands, distributed by its second dimension
(columns).

spmd(4)
    C = rand(1000,'codistributed');
end

With four workers, each worker contains a 1000-by-250 local piece of C.

Create a 1000-by-1000 codistributed single matrix of rands, distributed by its columns.
spmd(4)
    codist = codistributor('1d',2,100*[1:numlabs]);
    C = rand(1000,1000,'single',codist);
end

Each worker contains a 100-by-labindex local piece of C.

Create gpuArray Rand Matrix

Create a 1000-by-1000 gpuArray of rands with underlying class double:

G = rand(1000,'double','gpuArray');

See Also
codistributed.sprand | distributed.sprand | rand | randi | randn

Topics
“Control Random Number Streams on Workers” on page 5-29
“Random Number Streams on a GPU” on page 8-6
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Introduced in R2006b
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randi
Array of random integers

Syntax
R = randi(valrange,sz,arraytype)
R = randi(valrange,sz,datatype,arraytype)

R = randi(valrange,sz,'like',P)
R = randi(valrange,sz,datatype,'like',P)

C = randi(valrange,sz,codist)
C = randi(valrange,sz,datatype,codist)
C = randi(valrange,sz, ___ ,codist,'noCommunication')
C = randi(valrange,sz, ___ ,codist,'like',P)

Description
R = randi(valrange,sz,arraytype) creates a matrix with underlying class of double, with
randi integer values in all elements.

R = randi(valrange,sz,datatype,arraytype) creates a matrix with underlying class of
datatype, with randi values in all elements.

The size and type of array are specified by the argument options according to the following table.

Argument Values Descriptions

valrange max or [min max] Specifies integer value range from 1 to max, or from
min to max..

sz

n Specifies size as an n-by-n matrix.
m,n or [m n] Specifies size as an m-by-n matrix.
m,n,...,k or [m
n ... k]

Specifies size as an m-by-n-by-...-by-k array.

arraytype

'distributed' Specifies distributed array.

'codistributed' Specifies codistributed array, using the default
distribution scheme.

'gpuArray' Specifies gpuArray.

datatype

'double' (default),
'single', 'int8',
'uint8', 'int16',
'uint16', 'int32',
'uint32', 'int64',
or 'uint64'

Specifies underlying class of the array, i.e., the data
type of its elements.

R = randi(valrange,sz,'like',P) creates an array of randi values with the same type and
underlying class (data type) as array P.
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R = randi(valrange,sz,datatype,'like',P) creates an array of randi values with the
specified underlying class (datatype), and the same type as array P.

C = randi(valrange,sz,codist) or C = randi(valrange,sz,datatype,codist) creates a
codistributed array of randi values with the specified size and underlying class (the default
datatype is 'double'). The codistributor object codist specifies the distribution scheme for
creating the codistributed array. For information on constructing codistributor objects, see the
reference pages for codistributor1d and codistributor2dbc. To use the default distribution
scheme, you can specify a codistributor constructor without arguments. For example:

spmd
    C = randi(8,codistributor1d());
end

C = randi(valrange,sz, ___ ,codist,'noCommunication') specifies that no interworker
communication is to be performed when constructing a codistributed array, skipping some error
checking steps.

C = randi(valrange,sz, ___ ,codist,'like',P) creates a codistributed array of randi
values with the specified range, size, underlying class, and distribution scheme. If either the class or
codistributor argument is omitted, the characteristic is acquired from the codistributed array P.

Examples
Create Distributed Randi Matrix

Create a 1000-by-1000 distributed array of randi values from 1 to 100, with underlying class double:

D = randi(100,1000,'distributed');

Create Codistributed Randi Matrix

Create a 1000-by-1000 codistributed double matrix of randi values from 0 to 12, distributed by its
second dimension (columns).

spmd(4)
    C = randi([0 12],1000,'codistributed');
end

With four workers, each worker contains a 1000-by-250 local piece of C.

Create a 1000-by-1000 codistributed single matrix of randi values from 1 to 4, distributed by its
columns.
spmd(4)
    codist = codistributor('1d',2,100*[1:numlabs]);
    C = randi(4,1000,1000,'single',codist);
end

Each worker contains a 100-by-labindex local piece of C.

Create gpuArray Randi Matrix

Create a 1000-by-1000 gpuArray of randi values from —50 to 50, with underlying class double:

G = randi([-50 50],1000,'double','gpuArray');
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See Also
rand | randi | randn

Topics
“Control Random Number Streams on Workers” on page 5-29
“Random Number Streams on a GPU” on page 8-6

Introduced in R2014a
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randn
Array of randn values

Syntax
R = randn(sz,arraytype)
R = randn(sz,datatype,arraytype)

R = randn(sz,'like',P)
R = randn(sz,datatype,'like',P)

C = randn(sz,codist)
C = rand(sz,datatype,codist)
C = randn(sz, ___ ,codist,'noCommunication')
C = randn(sz, ___ ,codist,'like',P)

Description
R = randn(sz,arraytype) creates a matrix with underlying class of double, with randn values in
all elements.

R = randn(sz,datatype,arraytype) creates a matrix with underlying class of datatype, with
randn values in all elements.

The size and type of array are specified by the argument options according to the following table.

Argument Values Descriptions

sz

n Specifies size as an n-by-n matrix.
m,n or [m n] Specifies size as an m-by-n matrix.
m,n,...,k or [m
n ... k]

Specifies size as an m-by-n-by-...-by-k array.

arraytype

'distributed' Specifies distributed array.

'codistributed' Specifies codistributed array, using the default
distribution scheme.

'gpuArray' Specifies gpuArray.

datatype 'double' (default),
'single'

Specifies underlying class of the array, i.e., the data
type of its elements.

R = randn(sz,'like',P) creates an array of randn values with the same type and underlying
class (data type) as array P.

R = randn(sz,datatype,'like',P) creates an array of randn values with the specified
underlying class (datatype), and the same type as array P.

C = randn(sz,codist) or C = rand(sz,datatype,codist) creates a codistributed array of
randn values with the specified size and underlying class (the default datatype is 'double'). The
codistributor object codist specifies the distribution scheme for creating the codistributed array. For
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information on constructing codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc. To use the default distribution scheme, you can specify a codistributor
constructor without arguments. For example:

spmd
    C = randn(8,codistributor1d());
end

C = randn(sz, ___ ,codist,'noCommunication') specifies that no interworker communication
is to be performed when constructing a codistributed array, skipping some error checking steps.

C = randn(sz, ___ ,codist,'like',P) creates a codistributed array of randn values with the
specified size, underlying class, and distribution scheme. If either the class or codistributor argument
is omitted, the characteristic is acquired from the codistributed array P.

Examples
Create Distributed Randn Matrix

Create a 1000-by-1000 distributed array of randn values with underlying class double:

D = randn(1000,'distributed');

Create Codistributed Randn Matrix

Create a 1000-by-1000 codistributed double matrix of randn values, distributed by its second
dimension (columns).

spmd(4)
    C = randn(1000,'codistributed');
end

With four workers, each worker contains a 1000-by-250 local piece of C.

Create a 1000-by-1000 codistributed single matrix of randn values, distributed by its columns.
spmd(4)
    codist = codistributor('1d',2,100*[1:numlabs]);
    C = randn(1000,1000,'single',codist);
end

Each worker contains a 100-by-labindex local piece of C.

Create gpuArray Rand Matrix

Create a 1000-by-1000 gpuArray of randn values with underlying class double:

G = randn(1000,'double','gpuArray');

See Also
codistributed.sprandn | distributed.sprandn | rand | randi | randn

Topics
“Control Random Number Streams on Workers” on page 5-29
“Random Number Streams on a GPU” on page 8-6
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Introduced in R2006b
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recreate
Create new job from existing job

Syntax
newjob = recreate(oldjob)
newjob = recreate(oldjob,'Tasks',tasksToRecreate)
newjob = recreate(oldjob,'TaskState',states)
newjob = recreate(oldjob,'TaskID',ids)

Description
newjob = recreate(oldjob) creates a new job object based on an existing job, containing the
same tasks and options as oldjob. The old job can be in any state; the new job state is pending. If
oldjob was created using batch, then MATLAB automatically submits the new job.

newjob = recreate(oldjob,'Tasks',tasksToRecreate) creates a job object with tasks that
correspond to tasksToRecreate. Because communicating jobs have only one task, this option only
supports independent jobs.

newjob = recreate(oldjob,'TaskState',states) creates a job object with tasks that
correspond to the tasks with State specified by states. Because communicating jobs have only one
task, this option only supports independent jobs.

newjob = recreate(oldjob,'TaskID',ids) creates a job object containing the tasks from
oldjob that correspond to the tasks with IDs specified by ids. Because communicating jobs have
only one task, this option only supports independent jobs.

Examples

Use recreate to Resubmit Tasks with Errors

This approach is useful when tasks depend on a file that is not present anymore.

Create a new job using the default cluster profile. In this example, it is the local parallel pool.

cluster = parcluster;
job = createJob(cluster);

Create several tasks. In particular, create a task that depends on a MAT-file that does not exist.

createTask(job,@() 'Task1',1);
createTask(job,@() load('myData.mat'),1);

Submit the job, and wait for it to finish. Because the MAT-file in the second task does not exist, the job
fails. If you call fetchOutputs on job to retrieve the results, you get an error. Check the error using
the Error property of the corresponding task.
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submit(job);
wait(job);
job.Tasks(2).Error

ans = 
  ParallelException with properties:

     identifier: 'MATLAB:load:couldNotReadFile'
        message: 'Unable to read file 'myData.mat'. No such file or directory.'
          cause: {}
    remotecause: {[1×1 MException]}
          stack: [1×1 struct]

Create the MAT-file referenced from the second task using the save function. To create a new job
with the tasks that resulted in an error, use the 'Tasks' name-value pair in recreate, and provide
the hasError function. If you want to select a different set of tasks, you can define your own
function.

str = 'Task2';
save myData str
newjob = recreate(job,'Tasks',@hasError);

Submit the new job, wait for its completion, and fetch the outputs. Because the MAT-file now exists,
the job does not fail.

submit(newjob);
wait(newjob);
out = fetchOutputs(newjob);
out{1}

ans = struct with fields:
    str: 'Task2'

Recreate an Entire Job

This example shows how to recreate the entire job myJob.

newJob = recreate(myJob)               

Recreate a Job with Only Pending Tasks

This example shows how to recreate an independent job, which has only pending tasks from the job
oldIndependentJob.

newJob = recreate(oldIndependentJob,'TaskState','pending');

Recreate a Job with Specified Tasks

This example shows how to recreate an independent job, which has only the tasks with IDs 21 to 32
from the job oldIndependentJob.
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newJob = recreate(oldIndependentJob,'TaskID',[21:32]);

Recreate Jobs of a Specific User

This example shows how to find and recreate all failed jobs submitted by user Mary. Assume the
default cluster is the one Mary had submitted her jobs to.

c = parcluster();
failedjobs = findJob(c,'Username','Mary','State','failed');
for m = 1:length(failedjobs)
    newJob(m) = recreate(failedjobs(m));
end

Input Arguments
oldjob — Original job
parallel.Job

Original job to be duplicated, specified as a parallel.Job object.
Example: newJob = recreate(oldjob); submit(newJob);
Data Types: parallel.Job

tasksToRecreate — Tasks to duplicate
parallel.Task array | logical array | function handle

Tasks to duplicate from oldjob, specified as:

• An array of parallel.Task belonging to oldjob.
• A 1 x N logical array, where N is the size of oldjob.Tasks, indicating the tasks in oldjob to be

recreated.
• A function handle that accepts oldjob.Tasks as an input argument. This function must return a

1 x N logical array indicating the tasks in oldjob to be recreated, where N is the size of
oldjob.Tasks.

To rerun tasks containing errors or warnings, use this syntax with the predefined functions
@hasError and hasWarnings.
Example: newJob = recreate(oldjob,'Tasks',@hasError | @hasWarnings);
Data Types: parallel.Task | logical | function_handle

states — State of the tasks to duplicate
'pending' | 'running' | 'finished' | 'failed' | cell array with any of the valid states

State of the tasks to duplicate, specified as a string or cell array of strings. states represents the
state of the required tasks to recreate from oldjob. Valid states are 'pending', 'running',
'finished', and 'failed'.
Example: newJob = recreate(oldJob,'TaskState','failed');
Data Types: char | string | cell

ids — IDs of the tasks to duplicate
vector of integers
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IDs of the tasks to duplicate from oldjob, specified as a vector of integers.
Example: newJob = recreate(oldIndependentJob,'TaskID',[1 5]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
createCommunicatingJob | createJob | createTask | findJob | submit

Introduced in R2014a
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redistribute
Redistribute codistributed array with another distribution scheme

Syntax
D2 = redistribute(D1,codist)

Description
D2 = redistribute(D1,codist) redistributes a codistributed array D1 and returns D2 using the
distribution scheme defined by the codistributor object codist.

Examples
Redistribute an array according to the distribution scheme of another array.
spmd
  % First, create a magic square distributed by columns:
    M = codistributed(magic(10),codistributor1d(2,[1 2 3 4]));

  % Create a pascal matrix distributed by rows (first dimension):
    P = codistributed(pascal(10),codistributor1d(1));

  % Redistribute the pascal matrix according to the 
  % distribution (partition) scheme of the magic square:
    R = redistribute(P,getCodistributor(M));
end

See Also
codistributed | codistributor | codistributor1d.defaultPartition

Introduced in R2006b
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reset
Package: parallel.gpu

Reset GPU device and clear its memory

Syntax
reset(gpudev)

Description
reset(gpudev) resets the GPU device and clears its memory of gpuArray and CUDAKernel data.
The GPU device identified by gpudev remains the selected device, but all gpuArray and CUDAKernel
objects in MATLAB representing data on that device are invalid.

Arguments
gpudev GPUDevice object representing the currently selected device

Tips
After you reset a GPU device, any variables representing arrays or kernels on the device are invalid;
you should clear or redefine them.

Examples

Reset GPU Device

Create a gpuArray on the selected GPU device, then reset the device.

g = gpuDevice(1);
M = gpuArray(magic(4));
M  % Display gpuArray

    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

reset(g);
g   % Show that the device is still selected

g =

  CUDADevice with properties:

                      Name: 'Tesla K20c'
                     Index: 1
         ComputeCapability: '3.5'
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            SupportsDouble: 1
             DriverVersion: 7.5
            ToolkitVersion: 7.5
        MaxThreadsPerBlock: 1024
          MaxShmemPerBlock: 49152
        MaxThreadBlockSize: [1024 1024 64]
               MaxGridSize: [2.1475e+09 65535 65535]
                 SIMDWidth: 32
               TotalMemory: 5.0327e+09
           AvailableMemory: 4.9190e+09
       MultiprocessorCount: 13
              ClockRateKHz: 705500
               ComputeMode: 'Default'
      GPUOverlapsTransfers: 1
    KernelExecutionTimeout: 0
          CanMapHostMemory: 1
           DeviceSupported: 1
            DeviceSelected: 1

whos  % Show that the gpuArray variable name 
      % is still in the MATLAB workspace

  Name      Size      Bytes  Class
  g         1x1         112  parallel.gpu.CUDADevice
  M         1x1         108  gpuArray

M  % Try to display gpuArray

Data no longer exists on the GPU.

clear M

See Also
gpuArray | gpuDevice | parallel.gpu.CUDAKernel

Introduced in R2012a
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resume
Resume processing queue in MATLAB Job Scheduler

Syntax
resume(mjs)

Arguments
mjs MATLAB Job Scheduler object whose queue is resumed.

Description
resume(mjs) resumes processing of the specified MATLAB Job Scheduler's queue so that jobs
waiting in the queued state will be run. This call will do nothing if the MATLAB Job Scheduler is not
paused.

See Also
pause | wait

Introduced before R2006a
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saveAsProfile
Save cluster properties to specified profile

Description
saveAsProfile(cluster,profileName) saves the properties of the cluster object to the specified
profile, and updates the cluster Profile property value to indicate the new profile name.

Examples
Create a cluster, then modify a property and save the properties to a new profile.

myCluster = parcluster('local');
myCluster.NumWorkers = 3; 
saveAsProfile(myCluster,'local2'); New profile now specifies 3 workers

See Also
parallel.defaultClusterProfile | parcluster | saveProfile

Introduced in R2012a
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saveProfile
Save modified cluster properties to its current profile

Description
saveProfile(cluster) saves the modified properties on the cluster object to the profile specified
by the cluster’s Profile property, and sets the Modified property to false. If the cluster’s
Profile property is empty, an error is thrown.

Examples
Create a cluster, then modify a property and save the change to the profile.

myCluster = parcluster('local')

myCluster = 
 Local Cluster
    Properties: 
                          Profile: local
                         Modified: false
                             Host: HOSTNAME
                       NumWorkers: 4

myCluster.NumWorkers = 3

myCluster = 
 Local Cluster
    Properties: 
                          Profile: local
                         Modified: true
                             Host: HOSTNAME
                       NumWorkers: 3

The myCluster.Modified property is now true.

saveProfile(myCluster);
myCluster    

myCluster = 
 Local Cluster
    Properties: 
                          Profile: local
                         Modified: false
                             Host: HOSTNAME
                       NumWorkers: 3

After saving, the local profile now matches the current property settings, so the
myCluster.Modified property is false.

See Also
parallel.defaultClusterProfile | parcluster | saveAsProfile

10 Functions

10-322



Introduced in R2012a
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setConstantMemory
Set some constant memory on GPU

Syntax
setConstantMemory(kern,sym,val)
setConstantMemory(kern,sym1,val1,sym2,val2,...)

Description
setConstantMemory(kern,sym,val) sets the constant memory in the CUDA kernel kern with
symbol name sym to contain the data in val. val can be any numeric array, including a gpuArray.
The command errors if the named symbol does not exist or if it is not big enough to contain the
specified data. Partially filling a constant is allowed.

There is no automatic data-type conversion for constant memory, so it is important to make sure that
the supplied data is of the correct type for the constant memory symbol being filled.

setConstantMemory(kern,sym1,val1,sym2,val2,...) sets multiple constant symbols.

Examples
If KERN represents a CUDA kernel whose CU file contains the following includes and constant
definitions:

#include "tmwtypes.h"
__constant__ int32_t N1;
__constant__ int N2; // Assume 'int' is 32 bits
__constant__ double CONST_DATA[256];

you can fill these with MATLAB data as follows:

KERN = parallel.gpu.CUDAKernel(ptxFile,cudaFile);

setConstantMemory(KERN,'N1',int32(10));
setConstantMemory(KERN,'N2',int32(10));
setConstantMemory(KERN,'CONST_DATA',1:10);

or

setConstantMemory(KERN,'N1',int32(10),'N2',int32(10),'CONST_DATA',1:10);

See Also
gpuArray | parallel.gpu.CUDAKernel

Introduced in R2012a
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setJobClusterData
Set specific user data for job on generic cluster

Syntax
setJobClusterData(cluster,job,userdata)

Arguments
cluster Cluster object identifying the generic third-party cluster running the job
job Job object identifying the job for which to store data
userdata Information to store for this job

Description
setJobClusterData(cluster,job,userdata) stores data for the job job that is running on the
generic cluster cluster. You can later retrieve the information with the function
getJobClusterData. For example, it might be useful to store the third-party scheduler’s external ID
for this job, so that the function specified in GetJobStateFcn can later query the scheduler about
the state of the job. Or the stored data might be an array with the scheduler’s ID for each task in the
job.

For more information and examples on using these functions and properties, see “Plugin Scripts for
Generic Schedulers” on page 6-17.

See Also
getJobClusterData

Introduced in R2012a
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shutdown
Shut down cloud cluster

Syntax
shutdown(cluster)
shutdown(MJScluster,'At',D)
shutdown(MJScluster,'After',event)
shutdown(MJScluster,'After',numhours)

Description
shutdown(cluster) shuts down the cluster immediately.

shutdown(MJScluster,'At',D) shuts down the cluster at the time specified by the datenum,
datevec, or datetime D. D is interpreted in the local time zone unless D is a datetime with
TimeZone specified.

shutdown(MJScluster,'After',event) shuts down the cluster after the specified event event
has occurred. event can be 'never' or 'idle'. A cluster is 'idle' immediately when there are no
running jobs, queued jobs, or running pools. The cluster is eligible for shutdown if 'idle' for more
than 5 minutes, and is guaranteed to shut down within 60 minutes.

shutdown(MJScluster,'After',numhours) shuts down the cluster after numhours hours, as
measured from the time the method is called.

Examples

Shut Down a Cloud Cluster Immediately

shutdown(cluster);

Shut Down Cluster at Date and Time Specified

Specify date and time to terminate a cluster using a datenum, datevec, or datetime. The
datetime can (optionally) have a TimeZone specified.

shutdown(MJSCluster,'At',datenum('2017-02-22 19:00'));
shutdown(MJSCluster,'At',datevec('2017-02-22 19:00'));
shutdown(MJSCluster,'At',datetime(2017, 2, 22, 19, 0, 0,'TimeZone','local');

Enable Cluster to Run Indefinitely

shutdown(MJSCluster,'After','never');
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Shut Down When Cluster Is Idle

shutdown(MJSCluster,'After','idle');

Shut Down Cluster After a Number of Hours

shutdown(MJSCluster,'After',10);

Input Arguments
cluster — MATLAB Parallel Server for Amazon EC2 cloud cluster
cluster object (default)

MATLAB Parallel Server for Amazon EC2 cluster, specified as cluster object created using
parcluster.
Example: shutdown(cluster);

MJScluster — MATLAB Parallel Server for Amazon EC2 cloud cluster
cluster object (default)

MATLAB Parallel Server for Amazon EC2 cluster, specified as cluster object created using
parcluster.
Example: shutdown(MJScluster);

D — Date and time
datenum | datevec | datetime

Date and time, specified as a datenum, datevec, or datetime. D is interpreted in the local time
zone unless D is a datetime with TimeZone specified.
Example: shutdown(MJSCluster,'At',datenum('2017-02-22 19:00'));
Example: shutdown(MJSCluster,'At',datevec('2017-02-22 19:00'));
Example: shutdown(MJSCluster,'At',datetime(2017, 2, 22, 19, 0, 0,'TimeZone',
'local'));

event — Event to shut down the cluster
'never' | 'idle'

Event to shut down the cluster, specified as 'never' or 'idle'. A cluster is 'idle' immediately
when there are no running jobs, queued jobs, or running pools. The cluster is eligible for shutdown if
'idle' for more than 5 minutes, and is guaranteed to shut down within 60 minutes.
Example: shutdown(MJSCluster,'After','idle');

numhours — Number of hours
scalar

Number of hours after which the cluster shuts down, specified as scalar, measured from the time you
call shutdown.
Example: shutdown(MJSCluster,'After',10);
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See Also
datenum | datetime | datevec | parallel.Cluster | parcluster | parpool | start | wait
(cluster)

Introduced in R2017a
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sparse
Create sparse distributed or codistributed matrix

Syntax
SD = sparse(FD)
SC = sparse(m,n,codist)
SC = sparse(m,n,codist,'noCommunication')
SC = sparse(i,j,v,m,n,nzmax)
SC = sparse(i,j,v,m,n)
SC = sparse(i,j,v)

Description
SD = sparse(FD) converts a full distributed or codistributed array FD to a sparse distributed or
codistributed (respectively) array SD.

SC = sparse(m,n,codist) creates an m-by-n sparse codistributed array of underlying class
double, distributed according to the scheme defined by the codistributor codist. For information on
constructing codistributor objects, see the reference pages for codistributor1d and
codistributor2dbc. This form of the syntax is most useful inside spmd or a communicating job.

SC = sparse(m,n,codist,'noCommunication') creates an m-by-n sparse codistributed array in
the manner specified above, but does not perform any global communication for error checking when
constructing the array. This form of the syntax is most useful inside spmd or a communicating job.

SC = sparse(i,j,v,m,n,nzmax) uses vectors i and j to specify indices, and v to specify element
values, for generating an m-by-n sparse matrix such that SC(i(k),j(k)) = v(k), with space
allocated for nzmax nonzeros. If any of the input vectors i, j, or v is codistributed, the output sparse
matrix SC is codistributed. Vectors i, j, and v must be the same length. Any elements of v that are
zero are ignored, along with the corresponding values of i and j. Any elements of v that have
duplicate values of i and j are added together.

To simplify this six-argument call, you can pass scalars for the argument v and one of the arguments
i or j, in which case they are expanded so that i, j, and v all have the same length.

SC = sparse(i,j,v,m,n) uses nzmax = max([length(i) length(j)]) .

SC = sparse(i,j,v) uses m = max(i) and n = max(j). The maxima are computed before any
zeros in v are removed, so one of the rows of [i j v] might be [m n 0], assuring the matrix size
satisfies the requirements of m and n.

Note To create a sparse codistributed array of underlying class logical, first create an array of
underlying class double and then cast it using the logical function:

spmd
    SC = logical(sparse(m,n,codistributor1d()));
end

 sparse

10-329



Examples
With four workers,

spmd(4)
    C = sparse(1000,1000,codistributor1d())
end

creates a 1000-by-1000 codistributed sparse double array C. C is distributed by its second dimension
(columns), and each worker contains a 1000-by-250 local piece of C.

spmd(4)
    codist = codistributor1d(2,1:numlabs)
    C = sparse(10,10,codist);
end

creates a 10-by-10 codistributed sparse double array C, distributed by its columns. Each worker
contains a 10-by-labindex local piece of C.

Convert a distributed array into a sparse distributed array:

R = rand(1000,'distributed');
D = floor(2*R); % D also is distributed
SD = sparse(D); % SD is sparse distributed

Create a sparse codistributed array from vectors of indices and a distributed array of element values:

r = [ 1  1  4  4 8];
c = [ 1  4  1  4 8];
v = [10 20 30 40 0];
V = distributed(v);
spmd
    SC = sparse(r,c,V);
end

In this example, even though the fifth element of the value array v is 0, the size of the result is an 8–
by-8 matrix because of the corresponding maximum indices in r and c. Matrix SC is considered
codistributed when viewed inside an spmd block, and distributed when viewed from the client
workspace. To view a full version of the matrix, the full function converts this distributed sparse
array to a full distributed array:

S = full(SC)

    10     0     0    20     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
    30     0     0    40     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0

See Also
codistributed.spalloc | distributed.spalloc | sparse

Introduced in R2006b
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spmd
Execute code in parallel on workers of parallel pool

Syntax
spmd
    statements
end

Description
spmd, statements, end defines an spmd statement on a single line. MATLAB executes the spmd
body denoted by statements on several MATLAB workers simultaneously. Each worker can operate
on a different data set or different portion of distributed data, and can communicate with other
participating workers while performing the parallel computations. The spmd statement can be used
only if you have Parallel Computing Toolbox. To execute the statements in parallel, you must first
create a pool of MATLAB workers using parpool or have your parallel preferences allow the
automatic start of a pool.

Inside the body of the spmd statement, each MATLAB worker has a unique value of labindex, while
numlabs denotes the total number of workers executing the block in parallel. Within the body of the
spmd statement, communication functions for communicating jobs (such as labSend and
labReceive) can transfer data between the workers.

Values returning from the body of an spmd statement are converted to Composite objects on the
MATLAB client. A Composite object contains references to the values stored on the remote MATLAB
workers, and those values can be retrieved using cell-array indexing. The actual data on the workers
remains available on the workers for subsequent spmd execution, so long as the Composite exists on
the client and the parallel pool remains open.

By default, MATLAB uses all workers in the pool. When there is no pool active, MATLAB will create a
pool and use all the workers from that pool. If your preferences do not allow automatic pool creation,
MATLAB executes the block body locally and creates Composite objects as necessary. You cannot
execute an spmd block if any worker is busy executing a parfeval request, unless you use spmd(0).

For more information about spmd and Composite objects, see “Distribute Arrays and Run SPMD” on
page 1-12.

Note Use parfevalOnAll instead of parfor or spmd if you want to use clear. This preserves
workspace transparency. See “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-
50.

spmd(n), statements, end uses n to specify the exact number of MATLAB workers to evaluate
statements, provided that n workers are available from the parallel pool. If there are not enough
workers available, an error is thrown. If n is zero, MATLAB executes the block body locally and
creates Composite objects, the same as if there is no pool available.
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spmd(m,n), statements, end uses a minimum of m and a maximum of n workers to evaluate
statements. If there are not enough workers available, an error is thrown. m can be zero, which
allows the block to run locally if no workers are available.

Examples

Execute Code in Parallel with spmd

Create a parallel pool, and perform a simple calculation in parallel using spmd. MATLAB executes the
code inside the spmd on all workers in the parallel pool.

parpool(3);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 3).

spmd
  q = magic(labindex + 2);
end

Plot the results.

figure
subplot(1,3,1), imagesc(q{1});
subplot(1,3,2), imagesc(q{2});
subplot(1,3,3), imagesc(q{3});
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When you are done with computations, you can delete the current parallel pool.

delete(gcp);

Use Multiple GPUs in a Parallel Pool

If you have access to several GPUs, you can perform your calculations on multiple GPUs in parallel
using a parallel pool.

Start a parallel pool with as many workers as GPUs. To determine the number of GPUs available, use
the gpuDeviceCount function. By default, MATLAB assigns a different GPU to each worker for best
performance.

parpool('local',gpuDeviceCount);

To identify which GPU each worker is using, call gpuDevice inside an spmd block. The spmd block
runs gpuDevice on every worker.

spmd
    gpuDevice
end

Use parallel language features, such as parfor or parfeval, to distribute your computations to
workers in the parallel pool. If you use gpuArray enabled functions in your computations, these
functions run on the GPU of the worker. For more information, see “Run MATLAB Functions on a
GPU” on page 8-9. For an example, see “Run MATLAB Functions on Multiple GPUs”.

When you are done with your computations, shut down the parallel pool. You can use the gcp
function to obtain the current parallel pool.

delete(gcp('nocreate'));

If you want to use a different choice of GPUs, you can use gpuDevice to select a particular GPU on
each worker. Define an array, for example gpuIndices, that contains the indices of the GPUs to
activate on each worker. Then, start a parallel pool with as many workers as GPUs to select, and use
an spmd block to run gpuDevice on each worker. The labindex function identifies each worker. Use
this function to associate a worker with a GPU index.

gpuIndices = [1 3];
parpool(numel(gpuIndices));
spmd
    gpuDevice(gpuIndices(labindex));
end

As a best practice, and for best performance, assign a different GPU to each worker.

Tips
• An spmd block runs on the workers of the existing parallel pool. If no pool exists, spmd will start a

new parallel pool, unless the automatic starting of pools is disabled in your parallel preferences. If
there is no parallel pool and spmd cannot start one, the code runs serially in the client session.

• If the AutoAttachFiles property in the cluster profile for the parallel pool is set to true,
MATLAB performs an analysis on an spmd block to determine what code files are necessary for its
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execution, then automatically attaches those files to the parallel pool job so that the code is
available to the workers.

• For information about restrictions and limitations when using spmd, see “Run Single Programs on
Multiple Data Sets” on page 3-2.

See Also
Composite | batch | gop | labindex | numlabs | parallel.pool.Constant | parpool

Introduced in R2008b

10 Functions

10-334



start
Start cloud cluster

Syntax
start(cluster)

Description
start(cluster) starts the specified MATLAB Parallel Server for Amazon EC2 cluster, if it is not
already running. If the cluster is already running or in the process of shutting down, then
start(cluster) returns immediately, and the state of the cluster is not changed.

Examples

Start Cloud Cluster

Obtain your cluster profile using one of the following ways:

• From the MATLAB Parallel > Discover Clusters user interface. For more information, see
“Discover Clusters and Use Cluster Profiles” on page 5-11.

• By downloading it from Cloud Center. For more information, see MathWorks Cloud Center
documentation.

Create a cluster using the default profile.

myCluster = parcluster;

Start the cluster.

start(myCluster);

Wait for the cluster to be ready to accept job submissions.

wait(myCluster);

Input Arguments
cluster — MATLAB Parallel Server for Amazon EC2 cluster
cluster object (default)

MATLAB Parallel Server for Amazon EC2 cluster, specified as cluster object created using
parcluster.
Example: start(cluster)

See Also
parallel.Cluster | parcluster | parpool | shutdown | wait (cluster)
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submit
Queue job in scheduler

Syntax
submit(j)

Arguments
j Job object to be queued.

Description
submit(j) queues the job object j in its cluster queue. The cluster used for this job was determined
when the job was created.

Examples
Find the MATLAB Job Scheduler cluster identified by the cluster profile Profile1.

c1 = parcluster('Profile1');

Create a job object in this cluster.

j1 = createJob(c1);

Add a task object to be evaluated for the job.

t1 = createTask(j1,@rand,1,{8,4});

Queue the job object in the cluster for execution.

submit(j1);

Tips
When a job is submitted to a cluster queue, the job’s State property is set to queued, and the job is
added to the list of jobs waiting to be executed.

The jobs in the waiting list are executed in a first in, first out manner; that is, the order in which they
were submitted, except when the sequence is altered by promote, demote, cancel, or delete.

See Also
createCommunicatingJob | createJob | findJob | parcluster | promote | recreate

Introduced before R2006a
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subsasgn
Subscripted assignment for Composite

Syntax
C(i) = {B}
C(1:end) = {B}
C([i1,i2]) = {B1,B2}
C{i} = B

Description
subsasgn assigns remote values to Composite objects. The values reside on the workers in the
current parallel pool.

C(i) = {B} sets the entry of C on worker i to the value B.

C(1:end) = {B} sets all entries of C to the value B.

C([i1,i2]) = {B1,B2} assigns different values on workers i1 and i2.

C{i} = B sets the entry of C on worker i to the value B.

See Also
Composite | subsasgn | subsref

Introduced in R2008b
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subsref
Subscripted reference for Composite

Syntax
B = C(i)
B = C([i1,i2,...])
B = C{i}
[B1,B2,...] = C{[i1,i2,...]}

Description
subsref retrieves remote values of a Composite object from the workers in the current parallel pool.

B = C(i) returns the entry of Composite C from worker i as a cell array.

B = C([i1,i2,...]) returns multiple entries as a cell array.

B = C{i} returns the value of Composite C from worker i as a single entry.

[B1,B2,...] = C{[i1,i2,...]} returns multiple entries.

See Also
Composite | subsasgn | subsref

Introduced in R2008b
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taskFinish
User-defined options to run on worker when task finishes

Syntax
taskFinish(task)

Arguments
task The task being evaluated by the worker

Description
taskFinish(task) runs automatically on a worker each time the worker finishes evaluating a task
for a particular job. You do not call this function from the client session, nor explicitly as part of a task
function.

You add MATLAB code to the taskFinish.m file to define anything you want executed on the worker
when a task is finished. The worker looks for taskFinish.m in the following order, executing the
one it finds first:

1 Included in the job’s AttachedFiles property.
2 In a folder included in the job’s AdditionalPaths property.
3 In the worker’s MATLAB installation at the location

matlabroot/toolbox/parallel/user/taskFinish.m

To create a version of taskFinish.m for AttachedFiles or AdditionalPaths, copy the provided
file and modify it as required. For further details on taskFinish and its implementation, see the text
in the installed taskFinish.m file.

See Also
jobStartup | poolStartup | taskStartup

Introduced before R2006a
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taskStartup
User-defined options to run on worker when task starts

Syntax
taskStartup(task)

Arguments
task The task being evaluated by the worker.

Description
taskStartup(task) runs automatically on a worker each time the worker evaluates a task for a
particular job. You do not call this function from the client session, nor explicitly as part of a task
function.

You add MATLAB code to the taskStartup.m file to define task initialization on the worker. The
worker looks for taskStartup.m in the following order, executing the one it finds first:

1 Included in the job’s AttachedFiles property.
2 In a folder included in the job’s AdditionalPaths property.
3 In the worker’s MATLAB installation at the location

matlabroot/toolbox/parallel/user/taskStartup.m

To create a version of taskStartup.m for AttachedFiles or AdditionalPaths, copy the
provided file and modify it as required. For further details on taskStartup and its implementation,
see the text in the installed taskStartup.m file.

See Also
jobStartup | poolStartup | taskFinish

Introduced before R2006a
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send
Package: parallel.pool

Send data from worker to client using a data queue

Syntax
send(queue, data)
send(pollablequeue, data)

Description
send(queue, data) sends a message or data with the value data to the
parallel.pool.DataQueue specified by queue. Call afterEach to pass each of the pending
messages to the function specified by afterEach.

send(pollablequeue, data) sends a message or data with the value data to the
parallel.pool.PollableDataQueue specified by pollablequeue. Retrieve the result using
poll(pollablequeue), and return data as the answer.

Use the send and poll functions together using a pollable data queue to transfer and retrieve
messages or data from different workers.

Examples

Send a Message in a parfor-Loop, and Dispatch the Message on the Queue

Construct a DataQueue, and call afterEach.

q = parallel.pool.DataQueue;
afterEach(q, @disp);

Start a parfor-loop, and send a message. The pending message is passed to the afterEach
function, in this example @disp.

parfor i = 1:3
    send(q, i); 
end;

     1

     2

     3

For more details on listening for data using a DataQueue, see afterEach.
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Send a Message in a parfor-loop, and Poll for the Result

Construct a PollableDataQueue.

p = parallel.pool.PollableDataQueue;

Start a parfor-loop, and send a message, such as data with the value 1.

parfor i = 1
    send(p, i); 
end

Poll for the result.

poll(p)

     1

For more details on retrieving data using a PollableDataQueue, see poll.

Construct a Simple parfor Wait Bar Using a Data Queue

This example shows a function that creates a parfor wait bar. Create a DataQueue, and use
afterEach to specify the function to execute each time the queue receives data. This example calls a
subfunction that updates the wait bar.

Create a parfor-loop to carry out a computationally demanding task in MATLAB. Use send to send
some dummy data on each iteration of the parfor-loop. When the queue receives the data,
afterEach calls nUpdateWaitbar in the client MATLAB, and you can observe the wait bar
progress.

function a = parforWaitbar

D = parallel.pool.DataQueue;
h = waitbar(0, 'Please wait ...');
afterEach(D, @nUpdateWaitbar);

N = 200;
p = 1;

parfor i = 1:N
    a(i) = max(abs(eig(rand(400))));
    send(D, i);
end

    function nUpdateWaitbar(~)
        waitbar(p/N, h);
        p = p + 1;
    end
end
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Input Arguments
queue — Data queue
parallel.pool.DataQueue

Data queue, specified as a parallel.pool.DataQueue object.
Example: q = parallel.pool.DataQueue;

data — Message or data
scalar | vector | matrix | array | string | character vector | serializable object

Message or data from workers to a data queue, specified as any data type that can be serialized.
Example: send(queue, data);

pollablequeue — Pollable data queue
parallel.pool.PollableDataQueue

Pollable data queue, specified as a parallel.pool.PollableDataQueue object.
Example: p = parallel.pool.PollableDataQueue;

See Also
DataQueue | afterEach | parallel.pool.PollableDataQueue | parfor | parpool | poll

Introduced in R2017a
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ticBytes
Start counting bytes transferred within parallel pool

Syntax
ticBytes(pool)
startState = ticBytes(pool)

Description
ticBytes(pool) starts counting the number of bytes transferred to each worker in the pool, so
that later tocBytes(pool) can measure the amount of data transferred to each worker between the
two calls.

Use the ticBytes (pool) and tocBytes (pool) functions together to measure how much data is
transferred to and from the workers in a parallel pool. You can use ticBytes and tocBytes while
executing parallel language constructs and functions, such as parfor, spmd, or parfeval. Use
ticBytes and tocBytes to pass around less data and optimize your code.

startState = ticBytes(pool) saves the state to an output argument, startState, so that you
can simultaneously record the number of bytes transferred for multiple pairs of ticBytes and
tocBytes calls. Use the value of startState as an input argument for a subsequent call to
tocBytes.

Examples

Measure Amount of Data Transferred While Running a Simple parfor-loop

a = 0;
b = rand(100);
ticBytes(gcp);
parfor i = 1:100
    a = a + sum(b(:, i));
end
tocBytes(gcp)

Starting parallel pool (parpool) using the 'local' profile ... 
connected to 4 workers.

             BytesSentToWorkers    BytesReceivedFromWorkers
             __________________    ________________________

    1            42948              7156                   
    2            36548              7156                   
    3            27500              4500                   
    4            27500              4500                   
    Total    1.345e+05             23312                   
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Workers might transfer different numbers of bytes, because each worker might carry out different
numbers of loop iterations.

Simultaneously Measure Multiple Amounts of Data Transferred,Using Two Pairs of ticBytes
and tocBytes Calls

Measure the minimum and average number of bytes transferred while running a parfor loop nested
in a for loop.

REPS = 10;   
minBytes = Inf;   
ticBytes(gcp);  % ticBytes, pair 1

for ii=1:REPS
   a = 0;
   b = rand(100);
   startS = ticBytes(gcp)  % ticBytes, pair 2  
   parfor i = 1:100
       a = a + sum(b(:, i));
   end
   bytes = tocBytes(gcp, startS)  % tocBytes, pair 2  
   minBytes = min(bytes, minBytes)
end

averageBytes = tocBytes(gcp)/REPS  % tocBytes, pair 1 
          

Note that nesting a parfor-loop in a for-loop can be slow due to overhead, see “Convert Nested for-
Loops to parfor-Loops” on page 2-14.

Input Arguments
pool — parallel pool
parallel.Pool

Parallel pool, typically specified by gcp, if you want the current parallel pool. Otherwise, use
parpool to create a new pool.
Example: ticBytes(gcp);

Output Arguments
startState — Starting state
TicBytesResult

Starting state returned as an input argument for a subsequent call to tocBytes.
Example: startState = ticBytes(gcp);

See Also
gcp | parfeval | parfor | parpool | spmd | tocBytes
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tocBytes
Read how many bytes have been transferred since calling ticBytes

Syntax
tocBytes(pool)
bytes = tocBytes(pool)
tocBytes(pool,startState)
bytes = tocBytes(pool,startState)

Description
tocBytes(pool) reads how many bytes have been transferred since calling ticBytes. The function
displays the total number of bytes transferred to and from each of the workers in a parallel pool
after the most recent execution of ticBytes.

Use the ticBytes (pool) and tocBytes (pool) functions together to measure how much data is
transferred to and from the workers in a parallel pool. You can use ticBytes and tocBytes while
executing parallel language constructs and functions, such as parfor, spmd, or parfeval. Use
ticBytes and tocBytes to pass around less data and optimize your code.

bytes = tocBytes(pool) returns the number of bytes transferred to and from each of the
workers in the parallel pool.

tocBytes(pool,startState) displays the total number of bytes transferred in the parallel pool
after the ticBytes command that generated startState.

bytes = tocBytes(pool,startState) returns the number of bytes transferred to and from each
of the workers in the parallel pool after the ticBytes command that generated startState.

Examples

Measure Amount of Data Transferred While Running a Simple parfor-loop

Use tocBytes(gcp,startS) to measure the amount of data transferred.

a = 0;
b = rand(100);
startS = ticBytes(gcp);
parfor i = 1:100
    a = a + sum(b(:, i));
end
tocBytes(gcp,startS)

Starting parallel pool (parpool) using the 'local' profile ... 
connected to 4 workers.

             BytesSentToWorkers    BytesReceivedFromWorkers
             __________________    ________________________
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    1            42948              7156                   
    2            36548              7156                   
    3            27500              4500                   
    4            27500              4500                   
    Total    1.345e+05             23312                   

Workers might transfer different numbers of bytes, because each worker might carry out different
numbers of loop iterations.

Measure Amount of Data Transferred While Running a Simple spmd Block

Use bytes = tocBytes(gcp) to measure the amount of data transferred.

ticBytes(gcp);
spmd
    rand(100);
end
bytes = tocBytes(gcp)

bytes =

       13448        1208
       13448        1208
       13448        1208
       13448        1208                             

Workers transfer the same number of bytes, because each worker carries out the same number of
loop iterations.

Simultaneously Measure Multiple Amounts of Data Transferred, Using Two Pairs of
ticBytes and tocBytes Calls

Measure the minimum and average number of bytes transferred while running a parfor loop nested
in a for loop.

REPS = 10;   
minBytes = Inf;   
ticBytes(gcp);  % ticBytes, pair 1

for ii=1:REPS
   a = 0;
   b = rand(100);
   startS = ticBytes(gcp)  % ticBytes, pair 2  
   parfor i = 1:100
       a = a + sum(b(:, i));
   end
   bytes = tocBytes(gcp, startS)  % tocBytes, pair 2  
   minBytes = min(bytes, minBytes)
end

averageBytes = tocBytes(gcp)/REPS  % tocBytes, pair 1 
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Note that nesting a parfor-loop in a for-loop can be slow due to overhead, see “Convert Nested for-
Loops to parfor-Loops” on page 2-14.

Input Arguments
pool — parallel pool
parallel.Pool

Parallel pool, typically specified by gcp, if you want the current parallel pool. Otherwise, use
parpool to create a new pool.
Example: tocBytes(gcp);

startState — Starting state
TicBytesResult

Starting state returned by ticBytes(pool).
Example: startState = ticBytes(gcp);

Output Arguments
bytes — Bytes transferred
tocBytes(pool)

Bytes transferred, returned as a matrix of size numWorkers x 2. This matrix contains the number of
bytes transferred to and from each of the workers in the parallel pool. bytes returns values in bytes
without headings. Use tocBytes(pool) without an output argument to get Sent and Received
headings, worker numbers, and values in bytes in the Command Window output.
Example: bytes = tocBytes(pool);

See Also
gcp | parfeval | parfor | parpool | spmd | ticBytes

Introduced in R2016b
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true
Array of logical 1 (true)

Syntax
T = true(sz,arraytype)

T = true(sz,'like',P)

C = true(sz,codist)
C = true(sz, ___ ,codist,'noCommunication')
C = true(sz, ___ ,codist,'like',P)

Description
T = true(sz,arraytype) creates a matrix with true values in all elements.

The size and type of array are specified by the argument options according to the following table.

Argument Values Descriptions

sz

n Specifies size as an n-by-n matrix.
m,n or [m n] Specifies size as an m-by-n matrix.
m,n,...,k or [m
n ... k]

Specifies size as an m-by-n-by-...-by-k array.

arraytype

'distributed' Specifies distributed array.

'codistributed' Specifies codistributed array, using the default
distribution scheme.

'gpuArray' Specifies gpuArray.

T = true(sz,'like',P) creates an array of true values with the same type as array P.

C = true(sz,codist) creates a codistributed array of true values with the specified size. The
codistributor object codist specifies the distribution scheme for creating the codistributed array. For
information on constructing codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc. To use the default distribution scheme, you can specify a codistributor
constructor without arguments. For example:

spmd
    C = true(8,codistributor1d());
end

C = true(sz, ___ ,codist,'noCommunication') specifies that no interworker communication
is to be performed when constructing a codistributed array, skipping some error checking steps.

C = true(sz, ___ ,codist,'like',P) creates a codistributed array of true values with the
specified size and distribution scheme. If the codistributor argument is omitted, the distribution
scheme is taken from the codistributed array P.
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Examples
Create Distributed True Matrix

Create a 1000-by-1000 distributed array of trues with underlying class double:

D = true(1000,'distributed');

Create Codistributed True Matrix

Create a 1000-by-1000 codistributed matrix of trues, distributed by its second dimension (columns).

spmd(4)
    C = true(1000,'codistributed');
end

With four workers, each worker contains a 1000-by-250 local piece of C.

Create a 1000-by-1000 codistributed matrix of trues, distributed by its columns.
spmd(4)
    codist = codistributor('1d',2,100*[1:numlabs]);
    C = true(1000,1000,codist);
end

Each worker contains a 100-by-labindex local piece of C.

Create gpuArray True Matrix

Create a 1000-by-1000 gpuArray of trues:

G = true(1000,'gpuArray');

See Also
Inf | NaN | eye | false | ones | true | zeros

Introduced in R2006b
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updateAttachedFiles
Update attached files or folders on parallel pool

Syntax
updateAttachedFiles(poolobj)

Description
updateAttachedFiles(poolobj) checks all the attached files of the specified parallel pool to see
if they have changed, and replicates any changes to each of the workers in the pool. This checks files
that were attached (by a profile or parpool argument) when the pool was started and those
subsequently attached with the addAttachedFiles command.

Examples

Update Attached Files on Current Parallel Pool

Update all attached files on the current parallel pool.

poolobj = gcp;
updateAttachedFiles(poolobj)

Input Arguments
poolobj — Pool with attached files
pool object

Pool with attached files, specified as a pool object.
Example: poolobj = gcp;

See Also
addAttachedFiles | gcp | listAutoAttachedFiles | parpool

Topics
“Add and Modify Cluster Profiles” on page 5-14

Introduced in R2013b

 updateAttachedFiles

10-353



wait
Package: parallel

Wait for job to change state

Syntax
wait(j)
wait(j,state)
OK = wait(j,state,timeout)

Arguments
j Job object whose change in state to wait for.
state Value of the job object’s State property to wait for.
timeout Maximum time to wait, in seconds.

Description
wait(j) blocks execution in the client session until the job identified by the object j reaches the
'finished' state or fails. This occurs when all the job’s tasks are finished processing on the
workers.

wait(j,state) blocks execution in the client session until the specified job object changes state to
the value of state. The valid states to wait for are 'queued', 'running', and 'finished'.

If the object is currently or has already been in the specified state, a wait is not performed and
execution returns immediately. For example, if you execute wait(j,'queued') for a job already in
the 'finished' state, the call returns immediately.

OK = wait(j,state,timeout) blocks execution until either the job reaches the specified state,
or timeout seconds elapse, whichever happens first. OK is false if timeout is exceeded before
state is reached.

Note Simulink models cannot run while a MATLAB session is blocked by wait. If you must run
Simulink from the MATLAB client while also running jobs, you cannot use wait.

Examples
Submit a job to the queue, and wait for it to finish running before retrieving its results.

submit(j);
wait(j,'finished')
results = fetchOutputs(j)

Submit a batch job and wait for it to finish before retrieving its variables.
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j = batch('myScript');
wait(j)
load(j)

See Also
pause | resume | wait | wait (GPUDevice)

Introduced in R2008a

 wait

10-355



wait (cluster)
Wait for cloud cluster to change state

Syntax
wait(cluster)
wait(cluster,state)
OK = wait(cluster,state,timeout)

Description
wait(cluster) blocks execution in the client MATLAB session until cluster reaches the 'online'
state. The 'online' state indicates that the cluster is running and you can use all requested workers
to run jobs.

wait(cluster,state) blocks execution in the client session until cluster changes state. For a
cluster object, the valid states are:

• 'online': The cluster is running and you can use all requested workers to run jobs.
• 'waitingforworkers': The cluster is running, and you can use some but not all of the requested

workers to run jobs. You can still use the cluster in this state with the workers that are available.
• 'offline': The cluster is not running, but you can restart using the start() command or via

https://cloudcenter.mathworks.com. If the cluster has shared persisted storage, then any previous
jobs in the queue are still present when you restart the cluster.

OK = wait(cluster,state,timeout) blocks execution in the client session until cluster
changes state, or until timeout seconds have elapsed, whichever happens first. OK is true if state
has been reached or a terminal state such as 'error' occurs. OK is false in case of a timeout.

Examples

Wait Until the Cluster Is Running

In Cluster Profile Manager, select MATLAB Parallel Server for Amazon EC2 as your default cluster
profile.

Create and start a cloud cluster using the default profile.

cluster = parcluster;
start(cluster);

Wait until the cluster is running. Use all requested workers to run jobs.

wait(cluster,'online');
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Wait for Specified Time for Cluster to Start

In Cluster Profile Manager, select MATLAB Parallel Server for Amazon EC2 as your default cluster
profile.

Create and start a cloud cluster using the default profile.

cluster = parcluster;
start(cluster);

Wait 100 seconds for the head node and all workers to start.

OK = wait(cluster,'online',100);

Input Arguments
cluster — MATLAB Parallel Server for Amazon EC2 cloud cluster
cluster object (default)

MATLAB Parallel Server for Amazon EC2 cluster, specified as cluster object created using
parcluster.
Example: wait(cluster);

state — cloud cluster state
'online' | 'waitingforworkers' | 'offline'

Cloud cluster state, specified as a cluster object, for which the valid states are 'online',
'waitingforworkers', and 'offline'.
Example: wait(cluster,'online');

timeout — time elapsed before cloud cluster changes state
seconds

Time elapsed before cloud cluster changes state, specified in seconds.
Example: wait(cluster,'online',100);

Output Arguments
OK — check if state has been reached
Boolean

Check if state has been reached, specified as a Boolean. OK is true if state has been reached or a
terminal state such as 'error' occurs. OK is false in case of a timeout.
Example: OK = wait(cluster,'waitingforworkers',10);

See Also
parallel.Cluster | parcluster | parpool | shutdown | start

Introduced in R2017a
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wait
Package: parallel

Wait for futures to complete

Syntax
wait(F)
wait(F,state)
OK = wait(F,state,timeout)

Description
wait(F) blocks execution until each element of the array of futures F has reached the 'finished'
state.

wait(F,state) blocks execution until each element of the array of futures F has reached the state
state. Valid values for state are 'running' or 'finished'.

OK = wait(F,state,timeout) blocks execution for a maximum of timeout seconds. OK is false
if timeout is exceeded before state is reached.

See Also
fetchNext | fetchOutputs | isequal | parfeval | parfevalOnAll

Introduced in R2013b
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wait (GPUDevice)
Package: parallel.gpu

Wait for GPU calculation to complete

Syntax
wait(gpudev)

Description
wait(gpudev) blocks execution in MATLAB until the GPU device identified by the GPUDevice
object gpudev completes its calculations. This can be used before calls to toc when timing GPU code
that does not gather results back to the workspace. When gathering results from a GPU, MATLAB
automatically waits until all GPU calculations are complete, so you do not need to explicitly call wait
in that situation.

See Also
gather | gpuArray | gpuDevice | gputimeit

Topics
“Measure Performance on the GPU” on page 8-34

Introduced in R2014b
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write
Write distributed data to an output location

Syntax
write(location,D)
write(filepattern,D)
write( ___ ,Name,Value)

Description
write(location,D) writes the values in the distributed array D to files in the folder location. The
data is stored in an efficient binary format suitable for reading back using datastore(location).
If not distributed along the first dimension, MATLAB redistributes the data before writing, so that the
resulting files can be reread using datastore.

write(filepattern,D) uses the file extension from filepattern to determine the output format.
filepattern must include a folder to write the files into followed by a file name that includes a
wildcard *. The wildcard represents incremental numbers for generating unique file names, for
example write('folder/myfile_*.csv',D).

write( ___ ,Name,Value) specifies additional options with one or more name-value pair arguments
using any of the previous syntaxes. For example, you can specify the file type with 'FileType' and a
valid file type ('mat', 'seq', 'parquet', 'text', or 'spreadsheet'), or you can specify a
custom write function to process the data with 'WriteFcn' and a function handle.

Examples

Write Distributed Arrays

This example shows how to write a distributed array to a file system, then read it back using a
datastore.

Create a distributed array and write it to an output folder.

d = distributed.rand(5000,1);
location = 'hdfs://myHadoopCluster/some/output/folder';
write(location, d);

Recreate the distributed array from the written files.

ds = datastore(location);
d1 = distributed(ds);

Write Distributed Arrays Using File Patterns

This example shows how to write distributed arrays to different formats using a file pattern.
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Create a distributed table and write it to a simple text-based format that many applications can read.

dt = distributed(array2table(rand(5000,3)));
location = "/tmp/CSVData/dt_*.csv";
write(location, dt);

Recreate the distributed table from the written files.

ds = datastore(location);
dt1 = distributed(ds);

Write and Read Back Tall and Distributed Data

You can write distributed data and read it back as tall data and vice versa.

Create a distributed timetable and write it to disk.

dt = distributed(array2table(rand(5000,3)));
location = "/tmp/CSVData/dt_*.csv";
write(location, dt);

Build a tall table from the written files.

 ds = datastore(location);
 tt = tall(ds);

Alternatively, you can read data written from tall data into distributed data. Create a tall timetable
and write it to disk.

tt = tall(array2table(rand(5000,3)));
location = "/tmp/CSVData/dt_*.csv";
write(location, tt);

Read back into a distributed timetable.

 ds = datastore(location);
 dt = distributed(ds);

Write Distributed Arrays Using a Write Function

This example shows how to write distributed arrays to a file system using a custom write function.

Create a simple write function that writes out spreadsheet files.

function dataWriter(info, data)
       filename = info.SuggestedFilename;
       writetable(data, filename, "FileType", "spreadsheet");
end

Create a distributed table and write it to disk using the custom write function.
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dt = distributed(array2table(rand(5000,3)));
location = "/tmp/MyData/tt_*.xlsx";
write(location, dt, "WriteFcn", @dataWriter);

Input Arguments
location — Folder location to write data
character vector | string

Folder location to write data, specified as a character vector or string. location can specify a full or
relative path. The specified folder can be either of these options:

• Existing empty folder that contains no other files
• New folder that write creates

You can write data to local folders on your computer, folders on a shared network, or to remote
locations, such as Amazon S3, Windows Azure® Storage Blob, or a Hadoop Distributed File System
(HDFS). For more information about reading and writing data to remote locations, see “Work with
Remote Data” (MATLAB).
Example: location = '../../dir/data' specifies a relative file path.
Example: location = 'C:\Users\MyName\Desktop\data' specifies an absolute path to a
Windows desktop folder.
Example: location = 'file:///path/to/data' specifies an absolute URI path to a folder.
Example: location = 'hdfs://myHadoopCluster/some/output/folder' specifies an HDFS
URL.
Example: location = 's3://bucketname/some/output/folder' specifies an Amazon S3
location.
Data Types: char | string

D — Input array
distributed array

Input array, specified as a distributed array.

filepattern — File naming pattern
string | character vector

File naming pattern, specified as a string or a character vector. The file naming pattern must contain
a folder to write the files into followed by a file name that includes a wildcard *. write replaces the
wildcard with sequential numbers to ensure unique file names.
Example: write('folder/data_*.txt',D) writes the distributed array D as a series of .txt files
in folder with the file names data_1.txt, data_2.txt, and so on.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: write('C:\myData', D, 'FileType', 'text', 'WriteVariableNames', false)
writes the distributed array D to C:\myData as a collection of text files that do not use variable
names as column headings.

General Options

FileType — Type of file
'auto' (default) | 'mat' | 'parquet' | 'seq' | 'text' | 'spreadsheet'

Type of file, specified as the comma-separated pair consisting of 'FileType' and one of the allowed
file types: 'auto', 'mat', 'parquet', 'seq', 'text', or 'spreadsheet'.

Use the 'FileType' name-value pair with the location argument to specify what type of files to
write. By default, write attempts to automatically detect the proper file type. You do not need to
specify the 'FileType' name-value pair argument if write can determine the file type from an
extension in the location or filepattern arguments. write can determine the file type from
these extensions:

• .mat for MATLAB data files
• .parquet or .parq for Parquet files
• .seq for sequence files
• .txt, .dat, or .csv for delimited text files
• .xls, .xlsx, .xlsb, .xlsm, .xltx, or .xltm for spreadsheet files

Example: write('C:\myData', D, 'FileType', 'text')

WriteFcn — Custom writing function
function handle

Custom writing function, specified as the comma-separated pair consisting of 'WriteFcn' and a
function handle. The specified function receives blocks of data from D and is responsible for creating
the output files. You can use the 'WriteFcn' name-value pair argument to write data in a variety of
formats, even if the output format is not directly supported by write.

Functional Signature

The custom writing function must accept two input arguments, info and data:

function myWriter(info, data)

• data contains a block of data from D.
• info is a structure with fields that contain information about the block of data. You can use the
fields to build a new file name that is globally unique within the final location. The structure fields
are:

Field Description
RequiredLocation Fully qualified path to a temporary output

folder. All output files must be written to this
folder.

RequiredFilePattern The file pattern required for output file names.
This field is empty if only a folder name is
specified.
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Field Description
SuggestedFilename A fully qualified, globally unique file name that

meets the location and naming requirements.
PartitionIndex Index of the distributed array partition being

written.
NumPartitions Total number of partitions in the distributed

array.
BlockIndexInPartition Position of current data block within the

partition.
IsFinalBlock true if current block is the final block of the

partition.

File Naming

The file name used for the output files determines the order that the files are read back in later by
datastore. If the order of the files matters, then the best practice is to use the
SuggestedFilename field to name the files since the suggested name guarantees the file order. If
you do not use the suggested file name, the custom writing function must create globally unique,
correctly ordered file names. The file names should follow the naming pattern outlined in
RequiredFilePattern. The file names must be unique and correctly ordered between workers,
even though each worker writes to its own local folder.

Arrays with Multiple Partitions

A distributed array is divided into partitions to facilitate running calculations on the array in parallel
with Parallel Computing Toolbox. When writing a distributed array, each of the partitions is divided in
smaller blocks.

info contains several fields related to partitions: PartitionIndex, NumPartitions,
BlockIndexInPartition, and IsFinalBlock. These fields are useful when you are writing out a
single file and appending to it, which is a common task for arrays with large partitions that have been
split into many blocks. The custom writing function is called once per block, and the blocks in one
partition are always written in order on one worker. However, different partitions can be written by
different workers.

Example Function

A simple writing function that writes out spreadsheet files is:

function dataWriter(info, data)
  filename = info.SuggestedFilename;
  writetable(data, filename, 'FileType', 'spreadsheet')
end

To invoke dataWriter as the writing function for some data D, use the commands:

D = distributed(array2table(rand(5000,3)));
location = '/tmp/MyData/D_*.xlsx';
write(location, D, 'WriteFcn', @dataWriter);

For each block, the dataWriter function uses the suggested file name in the info structure and
calls writetable to write out a spreadsheet file. The suggested file name takes into account the file
naming pattern that is specified in the location argument.
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Data Types: function_handle

Text or Spreadsheet Files

WriteVariableNames — Indicator for writing variable names as column headings
true or 1 (default) | false or 0

Indicator for writing variable names as column headings, specified as the comma-separated pair
consisting of 'WriteVariableNames' and a numeric or logical 1 (true) or 0 (false).

Indicator Behavior
true Variable names are included as the column headings of the output. This is

the default behavior.
false Variable names are not included in the output.

DateLocale — Locale for writing dates
character vector | string scalar

Locale for writing dates, specified as the comma-separated pair consisting of 'DateLocale' and a
character vector or a string scalar. When writing datetime values to the file, use DateLocale to
specify the locale in which write should write month and day-of-week names and abbreviations. The
character vector or string takes the form xx_YY, where xx is a lowercase ISO 639-1 two-letter code
indicating a language, and YY is an uppercase ISO 3166-1 alpha-2 code indicating a country. For a list
of common values for the locale, see the Locale name-value pair argument for the datetime
function.

For Excel® files, write writes variables containing datetime arrays as Excel dates and ignores the
'DateLocale' parameter value. If the datetime variables contain years prior to either 1900 or
1904, then write writes the variables as text. For more information on Excel dates, see Differences
between the 1900 and the 1904 date system in Excel.
Example: 'DateLocale','ja_JP' or 'DateLocale',"ja_JP"
Data Types: char | string

Text Files Only

Delimiter — Field delimiter character
',' or 'comma' | ' ' or 'space' | ...

Field delimiter character, specified as the comma-separated pair consisting of 'Delimiter' and one
of these specifiers:

Specifier Field Delimiter
','

'comma'

Comma. This is the default behavior.

' '

'space'

Space

'\t'

'tab'

Tab
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Specifier Field Delimiter
';'

'semi'

Semicolon

'|'

'bar'

Vertical bar

You can use the 'Delimiter' name-value pair argument only for delimited text files.
Example: 'Delimiter','space' or 'Delimiter',"space"

QuoteStrings — Indicator for writing quoted text
false (default) | true

Indicator for writing quoted text, specified as the comma-separated pair consisting of
'QuoteStrings' and either false or true. If 'QuoteStrings' is true, then write encloses the
text in double quotation marks, and replaces any double-quote characters that appear as part of that
text with two double-quote characters. For an example, see “Write Quoted Text to CSV File”
(MATLAB).

You can use the 'QuoteStrings' name-value pair argument only with delimited text files.

Encoding — Character encoding scheme
'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding scheme associated with the file, specified as the comma-separated pair consisting
of 'Encoding' and 'system' or a standard character encoding scheme name like one of the values
in this table. When you do not specify any encoding or specify encoding as 'system', the write
function uses your system default encoding to write the file.

'Big5' 'ISO-8859-1' 'windows-874'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'  

Example: 'Encoding','system' or 'Encoding',"system" uses the system default encoding.
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Spreadsheet Files Only

Sheet — Target worksheet
character vector | string scalar | positive integer

Target worksheet, specified as the comma-separated pair consisting of 'Sheet' and a character
vector or a string scalar containing the worksheet name or a positive integer indicating the
worksheet index. The worksheet name cannot contain a colon (:). To determine the names of sheets
in a spreadsheet file, use [status,sheets] = xlsfinfo(filename).

If the sheet does not exist, then write adds a new sheet at the end of the worksheet collection. If the
sheet is an index larger than the number of worksheets, then write appends empty sheets until the
number of worksheets in the workbook equals the sheet index. In either case, write generates a
warning indicating that it has added a new worksheet.

You can use the 'Sheet' name-value pair argument only with spreadsheet files.
Example: 'Sheet',2
Example: 'Sheet', 'MySheetName'
Data Types: char | string | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Parquet Files Only

VariableCompression — Parquet compression algorithm
'snappy' (default) | 'brotli' | 'gzip' | 'uncompressed' | cell array of character vectors | string
vector

Parquet compression algorithm, specified as one of these values.

• 'snappy', 'brotli', 'gzip', or 'uncompressed'. If you specify one compression algorithm
then write compresses all variables using the same algorithm.

• Alternatively, you can specify a cell array of character vectors or a string vector containing the
names of the compression algorithms to use for each variable.

In general, 'snappy' has better performance for reading and writing, 'gzip' has a higher
compression ratio at the cost of more CPU processing time, and 'brotli' typically produces the
smallest file size at the cost of compression speed.
Example:
write('C:\myData',D,'FileType','parquet','VariableCompression','brotli')

Example: write('C:\myData', D, 'FileType', 'parquet', 'VariableCompression',
{'brotli' 'snappy' 'gzip'})

VariableEncoding — Encoding scheme names
'auto' (default) | 'dictionary' | 'plain' | cell array of character vectors | string vector

Encoding scheme names, specified as one of these values:

• 'auto' — write uses 'plain' encoding for logical variables, and 'dictionary' encoding for
all others.

• 'dictionary', 'plain' — If you specify one encoding scheme then write encodes all variables
with that scheme.
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• Alternatively, you can specify a cell array of character vectors or a string vector containing the
names of the encoding scheme to use for each variable.

In general, 'dictionary' encoding results in smaller file sizes, but 'plain' encoding can be faster
for variables that do not contain many repeated values. If the size of the dictionary or number of
unique values grows to be too big, then the encoding automatically reverts to plain encoding. For
more information on Parquet encodings, see Parquet encoding definitions.
Example: write('myData.parquet', D, 'FileType', 'parquet', 'VariableEncoding',
'plain')

Example: write('myData.parquet', D, 'FileType', 'parquet', 'VariableEncoding',
{'plain' 'dictionary' 'plain'})

Version — Parquet version to use
'2.0' (default) | '1.0'

Parquet version to use, specified as either '1.0' or '2.0'. By default, '2.0' offers the most
efficient storage, but you can select '1.0' for the broadest compatibility with external applications
that support the Parquet format.

Limitations
In some cases, write(location, D, 'FileType', type) creates files that do not represent the
original array D exactly. If you use datastore(location) to read the checkpoint files, then the
result might not have the same format or contents as the original distributed table.

For the 'text' and 'spreadsheet' file types, write uses these rules:

• write outputs numeric variables using longG format, and categorical, character, or string
variables as unquoted text.

• For non-text variables that have more than one column, write outputs multiple delimiter-
separated fields on each line, and constructs suitable column headings for the first line of the file.

• write outputs variables with more than two dimensions as two-dimensional variables, with
trailing dimensions collapsed.

• For cell-valued variables, write outputs the contents of each cell as a single row, in multiple
delimiter-separated fields, when the contents are numeric, logical, character, or categorical, and
outputs a single empty field otherwise.

Do not use the 'text' or 'spreadsheet' file types if you need to write an exact checkpoint of the
distributed array.

Tips
• Use the write function to create checkpoints or snapshots of your data as you work. This practice

allows you to reconstruct distributed arrays directly from files on disk rather than re-executing all
of the commands that produced the distributed array.

See Also
datastore | distributed | tall

Topics
“Distributed Arrays”
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Introduced in R2017a
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zeros
Array of zeros

Syntax
Z = zeros(sz,arraytype)
Z = zeros(sz,datatype,arraytype)

Z = zeros(sz,'like',P)
Z = zeros(sz,datatype,'like',P)

C = zeros(sz,codist)
C = zeros(sz,datatype,codist)
C = zeros(sz, ___ ,codist,'noCommunication')
C = zeros(sz, ___ ,codist,'like',P)

Description
Z = zeros(sz,arraytype) creates a matrix with underlying class of double, with zeros in all
elements.

Z = zeros(sz,datatype,arraytype) creates a matrix with underlying class of datatype, with
zeros in all elements.

The size and type of array are specified by the argument options according to the following table.

Argument Values Descriptions

sz

n Specifies size as an n-by-n matrix.
m,n or [m n] Specifies size as an m-by-n matrix.
m,n,...,k or [m
n ... k]

Specifies size as an m-by-n-by-...-by-k array.

arraytype

'distributed' Specifies distributed array.

'codistributed' Specifies codistributed array, using the default
distribution scheme.

'gpuArray' Specifies gpuArray.

datatype

'double' (default),
'single', 'int8',
'uint8', 'int16',
'uint16', 'int32',
'uint32', 'int64',
or 'uint64'

Specifies underlying class of the array, i.e., the data
type of its elements.

Z = zeros(sz,'like',P) creates an array of zeros with the same type and underlying class (data
type) as array P.

Z = zeros(sz,datatype,'like',P) creates an array of zeros with the specified underlying class
(datatype), and the same type as array P.
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C = zeros(sz,codist) or C = zeros(sz,datatype,codist) creates a codistributed array of
zeros with the specified size and underlying class (the default datatype is 'double'). The
codistributor object codist specifies the distribution scheme for creating the codistributed array. For
information on constructing codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc. To use the default distribution scheme, you can specify a codistributor
constructor without arguments. For example:

spmd
    C = zeros(8,codistributor1d());
end

C = zeros(sz, ___ ,codist,'noCommunication') specifies that no interworker communication
is to be performed when constructing a codistributed array, skipping some error checking steps.

C = zeros(sz, ___ ,codist,'like',P) creates a codistributed array of zeros with the specified
size, underlying class, and distribution scheme. If either the class or codistributor argument is
omitted, the characteristic is acquired from the codistributed array P.

Examples
Create Distributed Zeros Matrix

Create a 1000-by-1000 distributed array of zeros with underlying class double:

D = zeros(1000,'distributed');

Create Codistributed Zeros Matrix

Create a 1000-by-1000 codistributed double matrix of zeros, distributed by its second dimension
(columns).

spmd(4)
    C = zeros(1000,'codistributed');
end

With four workers, each worker contains a 1000-by-250 local piece of C.

Create a 1000-by-1000 codistributed uint16 matrix of zeros, distributed by its columns.
spmd(4)
    codist = codistributor('1d',2,100*[1:numlabs]);
    C = zeros(1000,1000,'uint16',codist);
end

Each worker contains a 100-by-labindex local piece of C.

Create gpuArray Zeros Matrix

Create a 1000-by-1000 gpuArray of zeros with underlying class uint32:

G = zeros(1000,'uint32','gpuArray');

See Also
Inf | NaN | eye | false | ones | true | zeros

 zeros
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